1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
use crate::math::Point;
use crate::utils;
use na;
use simba::scalar::RealField;
#[inline]
pub fn triangle_area<N: RealField>(pa: &Point<N>, pb: &Point<N>, pc: &Point<N>) -> N {
let mut a = na::distance(pa, pb);
let mut b = na::distance(pb, pc);
let mut c = na::distance(pc, pa);
let (c, b, a) = utils::sort3(&mut a, &mut b, &mut c);
let a = *a;
let b = *b;
let c = *c;
let sqr = (a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c));
sqr.sqrt() * na::convert(0.25)
}
#[inline]
pub fn triangle_center<N: RealField>(pa: &Point<N>, pb: &Point<N>, pc: &Point<N>) -> Point<N> {
utils::center(&[*pa, *pb, *pc])
}
#[inline]
pub fn triangle_perimeter<N: RealField>(pa: &Point<N>, pb: &Point<N>, pc: &Point<N>) -> N {
na::distance(pa, pb) + na::distance(pb, pc) + na::distance(pc, pa)
}
pub fn circumcircle<N: RealField>(pa: &Point<N>, pb: &Point<N>, pc: &Point<N>) -> (Point<N>, N) {
let a = *pa - *pc;
let b = *pb - *pc;
let na = a.norm_squared();
let nb = b.norm_squared();
let dab = a.dot(&b);
let _2: N = na::convert(2.0);
let denom = _2 * (na * nb - dab * dab);
if denom.is_zero() {
let c = *pa - *pb;
let nc = c.norm_squared();
if nc >= na && nc >= nb {
(na::center(pa, pb), nc.sqrt() / na::convert(2.0f64))
} else if na >= nb && na >= nc {
(na::center(pa, pc), na.sqrt() / na::convert(2.0f64))
} else {
(na::center(pb, pc), nb.sqrt() / na::convert(2.0f64))
}
} else {
let k = b * na - a * nb;
let center = *pc + (a * k.dot(&b) - b * k.dot(&a)) / denom;
let radius = na::distance(pa, ¢er);
(center, radius)
}
}
#[cfg(feature = "dim3")]
pub fn is_affinely_dependent_triangle<N: RealField>(
p1: &Point<N>,
p2: &Point<N>,
p3: &Point<N>,
) -> bool {
let p1p2 = *p2 - *p1;
let p1p3 = *p3 - *p1;
let _eps = N::default_epsilon();
let _eps_tol = _eps * na::convert(100.0f64);
relative_eq!(
p1p2.cross(&p1p3).norm_squared(),
na::zero(),
epsilon = _eps_tol * _eps_tol
)
}
pub fn is_point_in_triangle<N: RealField>(
p: &Point<N>,
p1: &Point<N>,
p2: &Point<N>,
p3: &Point<N>,
) -> bool {
let p1p2 = *p2 - *p1;
let p2p3 = *p3 - *p2;
let p3p1 = *p1 - *p3;
let p1p = *p - *p1;
let p2p = *p - *p2;
let p3p = *p - *p3;
let d11 = p1p.dot(&p1p2);
let d12 = p2p.dot(&p2p3);
let d13 = p3p.dot(&p3p1);
d11 >= na::zero()
&& d11 <= p1p2.norm_squared()
&& d12 >= na::zero()
&& d12 <= p2p3.norm_squared()
&& d13 >= na::zero()
&& d13 <= p3p1.norm_squared()
}
#[cfg(feature = "dim3")]
#[cfg(test)]
mod test {
use na::Point3;
#[test]
fn test_triangle_area() {
let pa = Point3::new(0.0f64, 5.0, 0.0);
let pb = Point3::new(0.0f64, 0.0, 0.0);
let pc = Point3::new(0.0f64, 0.0, 4.0);
assert!(relative_eq!(super::triangle_area(&pa, &pb, &pc), 10.0));
}
}