Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Common common used both by decoder and encoder
extern crate color_quant;

use std::borrow::Cow;

/// Disposal method
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum DisposalMethod {
    /// StreamingDecoder is not required to take any action.
    Any = 0,
    /// Do not dispose.
    Keep = 1,
    /// Restore to background color.
    Background = 2,
    /// Restore to previous.
    Previous = 3,
}

impl DisposalMethod {
    /// Converts `u8` to `Option<Self>`
    pub fn from_u8(n: u8) -> Option<DisposalMethod> {
        match n {
            0 => Some(DisposalMethod::Any),
            1 => Some(DisposalMethod::Keep),
            2 => Some(DisposalMethod::Background),
            3 => Some(DisposalMethod::Previous),
            _ => None
        }
    }
}

/// Known GIF block labels.
///
/// Note that the block uniquely specifies the layout of bytes that follow and how they are
/// framed. For example, the header always has a fixed length but is followed by a variable amount
/// of additional data. An image descriptor may be followed by a local color table depending on
/// information read in it. Therefore, it doesn't make sense to continue parsing after encountering
/// an unknown block as the semantics of following bytes are unclear.
///
/// The extension block provides a common framing for an arbitrary amount of application specific
/// data which may be ignored.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Block {
    /// Image block.
    Image = 0x2C,
    /// Extension block.
    Extension = 0x21,
    /// Image trailer.
    Trailer = 0x3B,
}

impl Block {
    /// Converts `u8` to `Option<Self>`
    pub fn from_u8(n: u8) -> Option<Block> {
        match n {
            0x2C => Some(Block::Image),
            0x21 => Some(Block::Extension),
            0x3B => Some(Block::Trailer),
            _ => None
        }
    }
}

/// A newtype wrapper around an arbitrary extension ID.
///
/// An extension is some amount of byte data organized in sub-blocks so that one can skip over it
/// without knowing the semantics. Though technically you likely want to use a `Application`
/// extension, the library tries to stay flexible here.
///
/// This allows us to customize the set of impls compared to a raw `u8`. It also clarifies the
/// intent and gives some inherent methods for interoperability with known extension types.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct AnyExtension(pub u8);

/// Known GIF extension labels.
///
/// These are extensions which may be interpreted by the library and to which a specification with
/// the internal data layout is known.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Extension {
    /// Plain Text extension.
    ///
    /// This instructs the decoder to render a text as characters in a grid of cells, in a
    /// mono-spaced font of its choosing. This is seldom actually implemented and ignored by
    /// ImageMagick. The color is always taken from the global table which further complicates any
    /// use. No real information on the frame sequencing of this block is available in the
    /// standard.
    Text = 0x01,
    /// Control extension.
    Control = 0xF9,
    /// Comment extension.
    Comment = 0xFE,
    /// Application extension.
    ///
    /// See [ImageMagick] for an idea of commonly recognized extensions.
    ///
    /// [ImageMagick]: https://github.com/ImageMagick/ImageMagick/blob/b0b58c6303195928060f55f9c3ca8233ab7f7733/coders/gif.c#L1128
    Application = 0xFF,
}

impl AnyExtension {
    /// Decode the label as a known extension.
    pub fn into_known(self) -> Option<Extension> {
        Extension::from_u8(self.0)
    }
}

impl From<Extension> for AnyExtension {
    fn from(ext: Extension) -> Self {
        AnyExtension(ext as u8)
    }
}

impl Extension {
    /// Converts `u8` to a `Extension` if it is known.
    pub fn from_u8(n: u8) -> Option<Extension> {
        match n {
            0x01 => Some(Extension::Text),
            0xF9 => Some(Extension::Control),
            0xFE => Some(Extension::Comment),
            0xFF => Some(Extension::Application),
            _ => None
        }
    }
}

/// A GIF frame
#[derive(Debug, Clone)]
pub struct Frame<'a> {
    /// Frame delay in units of 10 ms.
    pub delay: u16,
    /// Disposal method.
    pub dispose: DisposalMethod,
    /// Transparent index (if available).
    pub transparent: Option<u8>,
    /// True if the frame needs user input to be displayed.
    pub needs_user_input: bool,
    /// Offset from the top border of the canvas.
    pub top: u16,
    /// Offset from the left border of the canvas.
    pub left: u16,
    /// Width of the frame.
    pub width: u16,
    /// Height of the frame.
    pub height: u16,
    /// True if the image is interlaced.
    pub interlaced: bool,
    /// Frame local color palette if available.
    pub palette: Option<Vec<u8>>,
    /// Buffer containing the image data.
    /// Only indices unless configured differently.
    pub buffer: Cow<'a, [u8]>
}

impl<'a> Default for Frame<'a> {
    fn default() -> Frame<'a> {
        Frame {
            delay: 0,
            dispose: DisposalMethod::Keep,
            transparent: None,
            needs_user_input: false,
            top: 0,
            left: 0,
            width: 0,
            height: 0,
            interlaced: false,
            palette: None,
            buffer: Cow::Borrowed(&[])
        }
    }
}

impl Frame<'static> {
    /// Creates a frame from pixels in RGBA format.
    /// *Note: This method is not optimized for speed.*
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 4`.
    pub fn from_rgba(width: u16, height: u16, pixels: &mut [u8]) -> Frame<'static> {
        Frame::from_rgba_speed(width, height, pixels, 1)
    }

    /// Creates a frame from pixels in RGBA format.
    /// `speed` is a value in the range [1, 30].
    /// The higher the value the faster it runs at the cost of image quality.
    /// A `speed` of 10 is a good compromise between speed and quality.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 4`.
    /// *   If `speed < 1` or `speed > 30`
    pub fn from_rgba_speed(width: u16, height: u16, pixels: &mut [u8], speed: i32) -> Frame<'static> {
        assert_eq!(width as usize * height as usize * 4, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
        assert!(speed >= 1 && speed <= 30, "speed needs to be in the range [1, 30]");
        let mut frame = Frame::default();
        let mut transparent = None;
        for pix in pixels.chunks_mut(4) {
            if pix[3] != 0 {
                pix[3] = 0xFF;
            } else {
                transparent = Some([pix[0], pix[1], pix[2], pix[3]])
            }
        }
        frame.width = width;
        frame.height = height;
        let nq = color_quant::NeuQuant::new(speed, 256, pixels);
        frame.buffer = Cow::Owned(pixels.chunks(4).map(|pix| nq.index_of(pix) as u8).collect());
        frame.palette = Some(nq.color_map_rgb());
        frame.transparent = if let Some(t) = transparent {
            Some(nq.index_of(&t) as u8)
        } else {
            None
        };

        frame
    }

    /// Creates a frame from a palette and indexed pixels.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height`.
    /// *   If the length of palette > `256 * 3`.
    pub fn from_palette_pixels(width: u16, height: u16, pixels: &[u8], palette: &[u8], transparent: Option<u8>) -> Frame<'static> {
        assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");
        assert!(palette.len() <= 256*3, "Too many palette values to create a GIF Frame");
        let mut frame = Frame::default();

        frame.width = width;
        frame.height = height;

        frame.buffer = Cow::Owned(pixels.to_vec());
        frame.palette = Some(palette.to_vec());

        frame.transparent = transparent;

        frame
    }

    /// Creates a frame from indexed pixels in the global palette.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height`.
    pub fn from_indexed_pixels(width: u16, height: u16, pixels: &[u8], transparent: Option<u8>) -> Frame<'static> {
        assert_eq!(width as usize * height as usize, pixels.len(), "Too many or too little pixels for the given width and height to create a GIF Frame");
        let mut frame = Frame::default();

        frame.width = width;
        frame.height = height;

        frame.buffer = Cow::Owned(pixels.to_vec());
        frame.palette = None;

        frame.transparent = transparent;

        frame
    }

    /// Creates a frame from pixels in RGB format.
    /// *Note: This method is not optimized for speed.*
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 3`.
    pub fn from_rgb(width: u16, height: u16, pixels: &[u8]) -> Frame<'static> {
        Frame::from_rgb_speed(width, height, pixels, 1)
    }

    /// Creates a frame from pixels in RGB format.
    /// `speed` is a value in the range [1, 30].
    /// The higher the value the faster it runs at the cost of image quality.
    /// A `speed` of 10 is a good compromise between speed and quality.
    ///
    /// # Panics:
    /// *   If the length of pixels does not equal `width * height * 3`.
    /// *   If `speed < 1` or `speed > 30`
    pub fn from_rgb_speed(width: u16, height: u16, pixels: &[u8], speed: i32) -> Frame<'static> {
        assert_eq!(width as usize * height as usize * 3, pixels.len(), "Too much or too little pixel data for the given width and height to create a GIF Frame");
        let mut vec: Vec<u8> = Vec::with_capacity(pixels.len() + width as usize * height as usize);
        for v in pixels.chunks(3) {
            vec.extend([v[0], v[1], v[2], 0xFF].iter().cloned())
        }
        Frame::from_rgba_speed(width, height, &mut vec, speed)
    }

    pub(crate) fn required_bytes(&self) -> usize {
        usize::from(self.width) * usize::from(self.height)
    }
}