Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use super::*;

/// A trait which indicates that a type is a `repr(transparent)` wrapper around
/// the `Wrapped` value.
///
/// This allows safely creating references to `T` from those to the `Wrapped`
/// type, using the `wrap_ref` and `wrap_mut` functions.
///
/// # Safety
///
/// The safety contract of `TransparentWrapper` is relatively simple:
///
/// For a given `Wrapper` which implements `TransparentWrapper<Wrapped>`:
///
/// 1. Wrapper must be a `#[repr(transparent)]` wrapper around `Wrapped`. This
///    either means that it must be a `#[repr(transparent)]` struct which
///    contains a either a field of type `Wrapped` (or a field of some other
///    transparent wrapper for `Wrapped`) as the only non-ZST field.
///
/// 2. Any fields *other* than the `Wrapped` field must be trivially
///    constructable ZSTs, for example `PhantomData`, `PhantomPinned`, etc.
///
/// 3. The `Wrapper` may not impose additional alignment requirements over
///    `Wrapped`.
///     - Note: this is currently guaranteed by `repr(transparent)`, but there
///       have been discussions of lifting it, so it's stated here explicitly.
///
/// 4. The `wrap_ref` and `wrap_mut` functions on `TransparentWrapper` may not
///    be overridden.
///
/// ## Caveats
///
/// If the wrapper imposes additional constraints upon the wrapped type which
/// are required for safety, it's responsible for ensuring those still hold --
/// this generally requires preventing access to instances of the wrapped type,
/// as implementing `TransparentWrapper<U> for T` means anybody can call
/// `T::cast_ref(any_instance_of_u)`.
///
/// For example, it would be invalid to implement TransparentWrapper for `str`
/// to implement `TransparentWrapper` around `[u8]` because of this.
///
/// # Examples
///
/// ## Basic
///
/// ```
/// use bytemuck::TransparentWrapper;
/// # #[derive(Default)]
/// # struct SomeStruct(u32);
///
/// #[repr(transparent)]
/// struct MyWrapper(SomeStruct);
///
/// unsafe impl TransparentWrapper<SomeStruct> for MyWrapper {}
///
/// // interpret a reference to &SomeStruct as a &MyWrapper
/// let thing = SomeStruct::default();
/// let wrapped_ref: &MyWrapper = MyWrapper::wrap_ref(&thing);
///
/// // Works with &mut too.
/// let mut mut_thing = SomeStruct::default();
/// let wrapped_mut: &mut MyWrapper = MyWrapper::wrap_mut(&mut mut_thing);
///
/// # let _ = (wrapped_ref, wrapped_mut); // silence warnings
/// ```
///
/// ## Use with dynamically sized types
///
/// ```
/// use bytemuck::TransparentWrapper;
///
/// #[repr(transparent)]
/// struct Slice<T>([T]);
///
/// unsafe impl<T> TransparentWrapper<[T]> for Slice<T> {}
///
/// let s = Slice::wrap_ref(&[1u32, 2, 3]);
/// assert_eq!(&s.0, &[1, 2, 3]);
///
/// let mut buf = [1, 2, 3u8];
/// let sm = Slice::wrap_mut(&mut buf);
/// ```
pub unsafe trait TransparentWrapper<Wrapped: ?Sized> {
  /// Convert a reference to a wrapped type into a reference to the wrapper.
  ///
  /// This is a trait method so that you can write `MyType::wrap_ref(...)` in
  /// your code. It is part of the safety contract for this trait that if you
  /// implement `TransparentWrapper<_>` for your type you **must not** override
  /// this method.
  #[inline]
  fn wrap_ref(s: &Wrapped) -> &Self {
    unsafe {
      assert!(size_of::<*const Wrapped>() == size_of::<*const Self>());
      // Using a pointer cast doesn't work here because rustc can't tell that the
      // vtables match (if we lifted the ?Sized restriction, this would go away),
      // and transmute doesn't work for the usual reasons it doesn't work inside
      // generic functions.
      //
      // SAFETY: The unsafe contract requires that these have identical
      // representations. Using this transmute_copy instead of transmute here is
      // annoying, but is required as `Self` and `Wrapped` have unspecified
      // sizes still.
      let wrapped_ptr = s as *const Wrapped;
      let wrapper_ptr: *const Self = transmute_copy(&wrapped_ptr);
      &*wrapper_ptr
    }
  }

  /// Convert a mut reference to a wrapped type into a mut reference to the
  /// wrapper.
  ///
  /// This is a trait method so that you can write `MyType::wrap_mut(...)` in
  /// your code. It is part of the safety contract for this trait that if you implement
  /// `TransparentWrapper<_>` for your type you **must not** override this method.
  #[inline]
  fn wrap_mut(s: &mut Wrapped) -> &mut Self {
    unsafe {
      assert!(size_of::<*mut Wrapped>() == size_of::<*mut Self>());
      // Using a pointer cast doesn't work here because rustc can't tell that the
      // vtables match (if we lifted the ?Sized restriction, this would go away),
      // and transmute doesn't work for the usual reasons it doesn't work inside
      // generic functions.
      //
      // SAFETY: The unsafe contract requires that these have identical
      // representations. Using this transmute_copy instead of transmute here is
      // annoying, but is required as `Self` and `Wrapped` have unspecified
      // sizes still.
      let wrapped_ptr = s as *mut Wrapped;
      let wrapper_ptr: *mut Self = transmute_copy(&wrapped_ptr);
      &mut *wrapper_ptr
    }
  }
}

unsafe impl<T> TransparentWrapper<T> for core::num::Wrapping<T> {}