1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! Compute a maximum weight maximum matching between two disjoints sets of
//! vertices using the
//! [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm)
//! (also known as Hungarian algorithm).

use crate::matrix::Matrix;
use fixedbitset::FixedBitSet;
use num_traits::{Bounded, Signed, Zero};
use std::iter::Sum;

/// Adjacency matrix for weights.
pub trait Weights<C> {
    /// Return the number of rows.
    fn rows(&self) -> usize;

    /// Return the number of columns.
    fn columns(&self) -> usize;

    /// Return the element at position.
    fn at(&self, row: usize, col: usize) -> C;

    /// Return the negated weights.
    fn neg(&self) -> Self
    where
        Self: Sized,
        C: Signed;
}

impl<C: Copy> Weights<C> for Matrix<C> {
    #[must_use]
    fn rows(&self) -> usize {
        self.rows
    }

    #[must_use]
    fn columns(&self) -> usize {
        self.columns
    }

    #[must_use]
    fn at(&self, row: usize, col: usize) -> C {
        self[&(row, col)]
    }

    #[must_use]
    fn neg(&self) -> Self
    where
        C: Signed,
    {
        -self.clone()
    }
}

/// Compute a maximum weight maximum matching between two disjoints sets of
/// vertices using the
/// [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm)
/// (also known as Hungarian algorithm).
///
/// The weights between the first and second sets are given into the
/// `weights` adjacency matrix. The return value is a pair with
/// the total assignments weight, and a vector containing the column
/// corresponding the every row.
///
/// For this reason, the number of rows must not be larger than the number of
/// columns as no row will be left unassigned.
///
/// This algorithm executes in O(n³) where n is the cardinality of the sets.
///
/// # Panics
///
/// This function panics if the number of rows is larger than the number of
/// columns.
pub fn kuhn_munkres<C, W>(weights: &W) -> (C, Vec<usize>)
where
    C: Bounded + Sum<C> + Signed + Zero + Ord + Copy,
    W: Weights<C>,
{
    // We call x the rows and y the columns. (nx, ny) is the size of the matrix.
    let nx = weights.rows();
    let ny = weights.columns();
    assert!(
        nx <= ny,
        "number of rows must not be larger than number of columns"
    );
    // xy represents matching for x, yz matching for y
    let mut xy: Vec<Option<usize>> = vec![None; nx];
    let mut yx: Vec<Option<usize>> = vec![None; ny];
    // lx is the labelling for x nodes, ly the labelling for y nodes. We start
    // with an acceptable labelling with the maximum possible values for lx
    // and 0 for ly.
    let mut lx: Vec<C> = (0..nx)
        .map(|row| (0..ny).map(|col| weights.at(row, col)).max().unwrap())
        .collect::<Vec<_>>();
    let mut ly: Vec<C> = vec![Zero::zero(); ny];
    // s, augmenting, and slack will be reset every time they are reused. augmenting
    // contains Some(prev) when the corresponding node belongs to the augmenting path.
    let mut s = FixedBitSet::with_capacity(nx);
    let mut alternating = Vec::with_capacity(ny);
    let mut slack = vec![Zero::zero(); ny];
    let mut slackx = Vec::with_capacity(ny);
    for root in 0..nx {
        alternating.clear();
        alternating.resize(ny, None);
        // Find y such that the path is augmented. This will be set when breaking for the
        // loop below. Above the loop is some code to initialize the search.
        let mut y = {
            s.clear();
            s.insert(root);
            // Slack for a vertex y is, initially, the margin between the
            // sum of the labels of root and y, and the weight between root and y.
            // As we add x nodes to the alternating path, we update the slack to
            // represent the smallest margin between one of the x nodes and y.
            for y in 0..ny {
                slack[y] = lx[root] + ly[y] - weights.at(root, y);
            }
            slackx.clear();
            slackx.resize(ny, root);
            Some(loop {
                let mut delta = Bounded::max_value();
                let mut x = 0;
                let mut y = 0;
                // Select one of the smallest slack delta and its edge (x, y)
                // for y not in the alternating path already.
                for yy in 0..ny {
                    if alternating[yy].is_none() && slack[yy] < delta {
                        delta = slack[yy];
                        x = slackx[yy];
                        y = yy;
                    }
                }
                debug_assert!(s.contains(x));
                // If some slack has been found, remove it from x nodes in the
                // alternating path, and add it to y nodes in the alternating path.
                // The slack of y nodes outside the alternating path will be reduced
                // by this minimal slack as well.
                if delta > Zero::zero() {
                    for x in s.ones() {
                        lx[x] = lx[x] - delta;
                    }
                    for y in 0..ny {
                        if alternating[y].is_some() {
                            ly[y] = ly[y] + delta;
                        } else {
                            slack[y] = slack[y] - delta;
                        }
                    }
                }
                debug_assert!(lx[x] + ly[y] == weights.at(x, y));
                // Add (x, y) to the alternating path.
                alternating[y] = Some(x);
                if yx[y].is_none() {
                    // We have found an augmenting path.
                    break y;
                }
                // This y node had a predecessor, add it to the set of x nodes
                // in the augmenting path.
                let x = yx[y].unwrap();
                debug_assert!(!s.contains(x));
                s.insert(x);
                // Update slack because of the added vertex in s might contain a
                // greater slack than with previously inserted x nodes in the augmenting
                // path.
                for y in 0..ny {
                    if alternating[y].is_none() {
                        let alternate_slack = lx[x] + ly[y] - weights.at(x, y);
                        if slack[y] > alternate_slack {
                            slack[y] = alternate_slack;
                            slackx[y] = x;
                        }
                    }
                }
            })
        };
        // Inverse edges along the augmenting path.
        while y.is_some() {
            let x = alternating[y.unwrap()].unwrap();
            let prec = xy[x];
            yx[y.unwrap()] = Some(x);
            xy[x] = y;
            y = prec;
        }
    }
    (
        lx.into_iter().sum::<C>() + ly.into_iter().sum(),
        xy.into_iter().map(Option::unwrap).collect::<Vec<_>>(),
    )
}

/// Compute a minimum weight maximum matching between two disjoints sets of
/// vertices using the
/// [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm)
/// (also known as Hungarian algorithm).
///
/// The weights between the first and second sets are given into the
/// `weights` adjacency matrix. The return value is a pair with
/// the total assignments weight, and a vector containing the column
/// corresponding the every row.
///
/// For this reason, the number of rows must not be larger than the number of
/// columns as no row will be left unassigned.
///
/// This algorithm executes in O(n³) where n is the cardinality of the sets.
///
/// # Panics
///
/// This function panics if the number of rows is larger than the number of
/// columns.
pub fn kuhn_munkres_min<C, W>(weights: &W) -> (C, Vec<usize>)
where
    C: Bounded + Sum<C> + Zero + Signed + Ord + Copy,
    W: Weights<C>,
{
    let (total, assignments) = kuhn_munkres(&weights.neg());
    (-total, assignments)
}