1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
//! Compute a maximum weight maximum matching between two disjoints sets of //! vertices using the //! [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) //! (also known as Hungarian algorithm). use crate::matrix::Matrix; use fixedbitset::FixedBitSet; use num_traits::{Bounded, Signed, Zero}; use std::iter::Sum; /// Adjacency matrix for weights. pub trait Weights<C> { /// Return the number of rows. fn rows(&self) -> usize; /// Return the number of columns. fn columns(&self) -> usize; /// Return the element at position. fn at(&self, row: usize, col: usize) -> C; /// Return the negated weights. fn neg(&self) -> Self where Self: Sized, C: Signed; } impl<C: Copy> Weights<C> for Matrix<C> { #[must_use] fn rows(&self) -> usize { self.rows } #[must_use] fn columns(&self) -> usize { self.columns } #[must_use] fn at(&self, row: usize, col: usize) -> C { self[&(row, col)] } #[must_use] fn neg(&self) -> Self where C: Signed, { -self.clone() } } /// Compute a maximum weight maximum matching between two disjoints sets of /// vertices using the /// [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) /// (also known as Hungarian algorithm). /// /// The weights between the first and second sets are given into the /// `weights` adjacency matrix. The return value is a pair with /// the total assignments weight, and a vector containing the column /// corresponding the every row. /// /// For this reason, the number of rows must not be larger than the number of /// columns as no row will be left unassigned. /// /// This algorithm executes in O(n³) where n is the cardinality of the sets. /// /// # Panics /// /// This function panics if the number of rows is larger than the number of /// columns. pub fn kuhn_munkres<C, W>(weights: &W) -> (C, Vec<usize>) where C: Bounded + Sum<C> + Signed + Zero + Ord + Copy, W: Weights<C>, { // We call x the rows and y the columns. (nx, ny) is the size of the matrix. let nx = weights.rows(); let ny = weights.columns(); assert!( nx <= ny, "number of rows must not be larger than number of columns" ); // xy represents matching for x, yz matching for y let mut xy: Vec<Option<usize>> = vec![None; nx]; let mut yx: Vec<Option<usize>> = vec![None; ny]; // lx is the labelling for x nodes, ly the labelling for y nodes. We start // with an acceptable labelling with the maximum possible values for lx // and 0 for ly. let mut lx: Vec<C> = (0..nx) .map(|row| (0..ny).map(|col| weights.at(row, col)).max().unwrap()) .collect::<Vec<_>>(); let mut ly: Vec<C> = vec![Zero::zero(); ny]; // s, augmenting, and slack will be reset every time they are reused. augmenting // contains Some(prev) when the corresponding node belongs to the augmenting path. let mut s = FixedBitSet::with_capacity(nx); let mut alternating = Vec::with_capacity(ny); let mut slack = vec![Zero::zero(); ny]; let mut slackx = Vec::with_capacity(ny); for root in 0..nx { alternating.clear(); alternating.resize(ny, None); // Find y such that the path is augmented. This will be set when breaking for the // loop below. Above the loop is some code to initialize the search. let mut y = { s.clear(); s.insert(root); // Slack for a vertex y is, initially, the margin between the // sum of the labels of root and y, and the weight between root and y. // As we add x nodes to the alternating path, we update the slack to // represent the smallest margin between one of the x nodes and y. for y in 0..ny { slack[y] = lx[root] + ly[y] - weights.at(root, y); } slackx.clear(); slackx.resize(ny, root); Some(loop { let mut delta = Bounded::max_value(); let mut x = 0; let mut y = 0; // Select one of the smallest slack delta and its edge (x, y) // for y not in the alternating path already. for yy in 0..ny { if alternating[yy].is_none() && slack[yy] < delta { delta = slack[yy]; x = slackx[yy]; y = yy; } } debug_assert!(s.contains(x)); // If some slack has been found, remove it from x nodes in the // alternating path, and add it to y nodes in the alternating path. // The slack of y nodes outside the alternating path will be reduced // by this minimal slack as well. if delta > Zero::zero() { for x in s.ones() { lx[x] = lx[x] - delta; } for y in 0..ny { if alternating[y].is_some() { ly[y] = ly[y] + delta; } else { slack[y] = slack[y] - delta; } } } debug_assert!(lx[x] + ly[y] == weights.at(x, y)); // Add (x, y) to the alternating path. alternating[y] = Some(x); if yx[y].is_none() { // We have found an augmenting path. break y; } // This y node had a predecessor, add it to the set of x nodes // in the augmenting path. let x = yx[y].unwrap(); debug_assert!(!s.contains(x)); s.insert(x); // Update slack because of the added vertex in s might contain a // greater slack than with previously inserted x nodes in the augmenting // path. for y in 0..ny { if alternating[y].is_none() { let alternate_slack = lx[x] + ly[y] - weights.at(x, y); if slack[y] > alternate_slack { slack[y] = alternate_slack; slackx[y] = x; } } } }) }; // Inverse edges along the augmenting path. while y.is_some() { let x = alternating[y.unwrap()].unwrap(); let prec = xy[x]; yx[y.unwrap()] = Some(x); xy[x] = y; y = prec; } } ( lx.into_iter().sum::<C>() + ly.into_iter().sum(), xy.into_iter().map(Option::unwrap).collect::<Vec<_>>(), ) } /// Compute a minimum weight maximum matching between two disjoints sets of /// vertices using the /// [Kuhn-Munkres algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) /// (also known as Hungarian algorithm). /// /// The weights between the first and second sets are given into the /// `weights` adjacency matrix. The return value is a pair with /// the total assignments weight, and a vector containing the column /// corresponding the every row. /// /// For this reason, the number of rows must not be larger than the number of /// columns as no row will be left unassigned. /// /// This algorithm executes in O(n³) where n is the cardinality of the sets. /// /// # Panics /// /// This function panics if the number of rows is larger than the number of /// columns. pub fn kuhn_munkres_min<C, W>(weights: &W) -> (C, Vec<usize>) where C: Bounded + Sum<C> + Zero + Signed + Ord + Copy, W: Weights<C>, { let (total, assignments) = kuhn_munkres(&weights.neg()); (-total, assignments) }