1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
use crate::read_u8;
use error::{Error, Result};
use marker::Marker;
use parser::ScanInfo;
use std::io::Read;

const LUT_BITS: u8 = 8;

#[derive(Debug)]
pub struct HuffmanDecoder {
    bits: u64,
    num_bits: u8,
    marker: Option<Marker>,
}

impl HuffmanDecoder {
    pub fn new() -> HuffmanDecoder {
        HuffmanDecoder {
            bits: 0,
            num_bits: 0,
            marker: None,
        }
    }

    // Section F.2.2.3
    // Figure F.16
    pub fn decode<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<u8> {
        if self.num_bits < 16 {
            self.read_bits(reader)?;
        }

        let (value, size) = table.lut[self.peek_bits(LUT_BITS) as usize];

        if size > 0 {
            self.consume_bits(size);
            Ok(value)
        }
        else {
            let bits = self.peek_bits(16);

            for i in LUT_BITS .. 16 {
                let code = (bits >> (15 - i)) as i32;

                if code <= table.maxcode[i as usize] {
                    self.consume_bits(i + 1);

                    let index = (code + table.delta[i as usize]) as usize;
                    return Ok(table.values[index]);
                }
            }

            Err(Error::Format("failed to decode huffman code".to_owned()))
        }
    }

    pub fn decode_fast_ac<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<Option<(i16, u8)>> {
        if let Some(ref ac_lut) = table.ac_lut {
            if self.num_bits < LUT_BITS {
                self.read_bits(reader)?;
            }

            let (value, run_size) = ac_lut[self.peek_bits(LUT_BITS) as usize];

            if run_size != 0 {
                let run = run_size >> 4;
                let size = run_size & 0x0f;

                self.consume_bits(size);
                return Ok(Some((value, run)));
            }
        }

        Ok(None)
    }

    #[inline]
    pub fn get_bits<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<u16> {
        if self.num_bits < count {
            self.read_bits(reader)?;
        }

        let bits = self.peek_bits(count);
        self.consume_bits(count);

        Ok(bits)
    }

    #[inline]
    pub fn receive_extend<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<i16> {
        let value = self.get_bits(reader, count)?;
        Ok(extend(value, count))
    }

    pub fn reset(&mut self) {
        self.bits = 0;
        self.num_bits = 0;
    }

    pub fn take_marker<R: Read>(&mut self, reader: &mut R) -> Result<Option<Marker>> {
        self.read_bits(reader).map(|_| self.marker.take())
    }

    #[inline]
    fn peek_bits(&mut self, count: u8) -> u16 {
        debug_assert!(count <= 16);
        debug_assert!(self.num_bits >= count);

        ((self.bits >> (64 - count)) & ((1 << count) - 1)) as u16
    }

    #[inline]
    fn consume_bits(&mut self, count: u8) {
        debug_assert!(self.num_bits >= count);

        self.bits <<= count as usize;
        self.num_bits -= count;
    }

    fn read_bits<R: Read>(&mut self, reader: &mut R) -> Result<()> {
        while self.num_bits <= 56 {
            // Fill with zero bits if we have reached the end.
            let byte = match self.marker {
                Some(_) => 0,
                None => read_u8(reader)?,
            };

            if byte == 0xFF {
                let mut next_byte = read_u8(reader)?;

                // Check for byte stuffing.
                if next_byte != 0x00 {
                    // We seem to have reached the end of entropy-coded data and encountered a
                    // marker. Since we can't put data back into the reader, we have to continue
                    // reading to identify the marker so we can pass it on.

                    // Section B.1.1.2
                    // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
                    while next_byte == 0xFF {
                        next_byte = read_u8(reader)?;
                    }

                    match next_byte {
                        0x00 => return Err(Error::Format("FF 00 found where marker was expected".to_owned())),
                        _    => self.marker = Some(Marker::from_u8(next_byte).unwrap()),
                    }

                    continue;
                }
            }

            self.bits |= (byte as u64) << (56 - self.num_bits);
            self.num_bits += 8;
        }

        Ok(())
    }
}

// Section F.2.2.1
// Figure F.12
fn extend(value: u16, count: u8) -> i16 {
    let vt = 1 << (count as u16 - 1);

    if value < vt {
        value as i16 + (-1 << count as i16) + 1
    } else {
        value as i16
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum HuffmanTableClass {
    DC,
    AC,
}

pub struct HuffmanTable {
    values: Vec<u8>,
    delta: [i32; 16],
    maxcode: [i32; 16],

    lut: [(u8, u8); 1 << LUT_BITS],
    ac_lut: Option<[(i16, u8); 1 << LUT_BITS]>,
}

impl HuffmanTable {
    pub fn new(bits: &[u8; 16], values: &[u8], class: HuffmanTableClass) -> Result<HuffmanTable> {
        let (huffcode, huffsize) = derive_huffman_codes(bits)?;

        // Section F.2.2.3
        // Figure F.15
        // delta[i] is set to VALPTR(I) - MINCODE(I)
        let mut delta = [0i32; 16];
        let mut maxcode = [-1i32; 16];
        let mut j = 0;

        for i in 0 .. 16 {
            if bits[i] != 0 {
                delta[i] = j as i32 - huffcode[j] as i32;
                j += bits[i] as usize;
                maxcode[i] = huffcode[j - 1] as i32;
            }
        }

        // Build a lookup table for faster decoding.
        let mut lut = [(0u8, 0u8); 1 << LUT_BITS];

        for (i, &size) in huffsize.iter().enumerate().filter(|&(_, &size)| size <= LUT_BITS) {
            let bits_remaining = LUT_BITS - size;
            let start = (huffcode[i] << bits_remaining) as usize;

            for j in 0 .. 1 << bits_remaining {
                lut[start + j] = (values[i], size);
            }
        }

        // Build a lookup table for small AC coefficients which both decodes the value and does the
        // equivalent of receive_extend.
        let ac_lut = match class {
            HuffmanTableClass::DC => None,
            HuffmanTableClass::AC => {
                let mut table = [(0i16, 0u8); 1 << LUT_BITS];

                for (i, &(value, size)) in lut.iter().enumerate() {
                    let run_length = value >> 4;
                    let magnitude_category = value & 0x0f;

                    if magnitude_category > 0 && size + magnitude_category <= LUT_BITS {
                        let unextended_ac_value = (((i << size) & ((1 << LUT_BITS) - 1)) >> (LUT_BITS - magnitude_category)) as u16;
                        let ac_value = extend(unextended_ac_value, magnitude_category);

                        table[i] = (ac_value, (run_length << 4) | (size + magnitude_category));
                    }
                }

                Some(table)
            },
        };

        Ok(HuffmanTable {
            values: values.to_vec(),
            delta: delta,
            maxcode: maxcode,
            lut: lut,
            ac_lut: ac_lut,
        })
    }
}

// Section C.2
fn derive_huffman_codes(bits: &[u8; 16]) -> Result<(Vec<u16>, Vec<u8>)> {
    // Figure C.1
    let huffsize = bits.iter()
                       .enumerate()
                       .fold(Vec::new(), |mut acc, (i, &value)| {
                           acc.extend(std::iter::repeat((i + 1) as u8).take(value as usize));
                           acc
                       });

    // Figure C.2
    let mut huffcode = vec![0u16; huffsize.len()];
    let mut code_size = huffsize[0];
    let mut code = 0u32;

    for (i, &size) in huffsize.iter().enumerate() {
        while code_size < size {
            code <<= 1;
            code_size += 1;
        }

        if code >= (1u32 << size) {
            return Err(Error::Format("bad huffman code length".to_owned()));
        }

        huffcode[i] = code as u16;
        code += 1;
    }

    Ok((huffcode, huffsize))
}

// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
//  least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
//  *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
//  use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
//  MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
//  segment to them, or else the decoder won't have any idea how to decompress the data.
//  The exact table necessary is given in the OpenDML spec.""
pub fn fill_default_mjpeg_tables(scan: &ScanInfo,
                                 dc_huffman_tables: &mut[Option<HuffmanTable>],
                                 ac_huffman_tables: &mut[Option<HuffmanTable>]) {
    // Section K.3.3

    if dc_huffman_tables[0].is_none() && scan.dc_table_indices.iter().any(|&i| i == 0) {
        // Table K.3
        dc_huffman_tables[0] = Some(HuffmanTable::new(
            &[0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
    }
    if dc_huffman_tables[1].is_none() && scan.dc_table_indices.iter().any(|&i| i == 1) {
        // Table K.4
        dc_huffman_tables[1] = Some(HuffmanTable::new(
            &[0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00],
            &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
    }
    if ac_huffman_tables[0].is_none() && scan.ac_table_indices.iter().any(|&i| i == 0) {
        // Table K.5
        ac_huffman_tables[0] = Some(HuffmanTable::new(
            &[0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D],
            &[0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
              0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
              0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
              0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
              0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
              0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
              0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
              0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
              0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
              0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
              0xF9, 0xFA
            ], HuffmanTableClass::AC).unwrap());
    }
    if ac_huffman_tables[1].is_none() && scan.ac_table_indices.iter().any(|&i| i == 1) {
        // Table K.6
        ac_huffman_tables[1] = Some(HuffmanTable::new(
            &[0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77],
            &[0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
              0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
              0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
              0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
              0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
              0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
              0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
              0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
              0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
              0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
              0xF9, 0xFA
            ], HuffmanTableClass::AC).unwrap());
    }
}