1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
// Copyright (c) 2017 Gilad Naaman // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. /// Macro to create a local `base_ptr` raw pointer of the given type, avoiding UB as /// much as is possible currently. #[cfg(maybe_uninit)] #[macro_export] #[doc(hidden)] macro_rules! _memoffset__let_base_ptr { ($name:ident, $type:ty) => { // No UB here, and the pointer does not dangle, either. // But we have to make sure that `uninit` lives long enough, // so it has to be in the same scope as `$name`. That's why // `let_base_ptr` declares a variable (several, actually) // instead of returning one. let uninit = $crate::mem::MaybeUninit::<$type>::uninit(); let $name: *const $type = uninit.as_ptr(); }; } #[cfg(not(maybe_uninit))] #[macro_export] #[doc(hidden)] macro_rules! _memoffset__let_base_ptr { ($name:ident, $type:ty) => { // No UB right here, but we will later dereference this pointer to // offset into a field, and that is UB because the pointer is dangling. let $name = $crate::mem::align_of::<$type>() as *const $type; }; } /// Macro to compute the distance between two pointers. #[cfg(feature = "unstable_const")] #[macro_export] #[doc(hidden)] macro_rules! _memoffset_offset_from { ($field:expr, $base:expr) => { // Compute offset, with unstable `offset_from` for const-compatibility. // (Requires the pointers to not dangle, but we already need that for `raw_field!` anyway.) unsafe { ($field as *const u8).offset_from($base as *const u8) as usize } }; } #[cfg(not(feature = "unstable_const"))] #[macro_export] #[doc(hidden)] macro_rules! _memoffset_offset_from { ($field:expr, $base:expr) => { // Compute offset. ($field as usize) - ($base as usize) }; } /// Calculates the offset of the specified field from the start of the named struct. /// /// ## Examples /// ``` /// #[macro_use] /// extern crate memoffset; /// /// #[repr(C, packed)] /// struct Foo { /// a: u32, /// b: u64, /// c: [u8; 5] /// } /// /// fn main() { /// assert_eq!(offset_of!(Foo, a), 0); /// assert_eq!(offset_of!(Foo, b), 4); /// } /// ``` #[macro_export(local_inner_macros)] macro_rules! offset_of { ($parent:path, $field:tt) => {{ // Get a base pointer (non-dangling if rustc supports `MaybeUninit`). _memoffset__let_base_ptr!(base_ptr, $parent); // Get field pointer. let field_ptr = raw_field!(base_ptr, $parent, $field); // Compute offset. _memoffset_offset_from!(field_ptr, base_ptr) }}; } /// Calculates the offset of the specified field from the start of the tuple. /// /// ## Examples /// ``` /// #[macro_use] /// extern crate memoffset; /// /// fn main() { /// assert!(offset_of_tuple!((u8, u32), 1) >= 0, "Tuples do not have a defined layout"); /// } /// ``` #[cfg(tuple_ty)] #[macro_export(local_inner_macros)] macro_rules! offset_of_tuple { ($parent:ty, $field:tt) => {{ // Get a base pointer (non-dangling if rustc supports `MaybeUninit`). _memoffset__let_base_ptr!(base_ptr, $parent); // Get field pointer. let field_ptr = raw_field_tuple!(base_ptr, $parent, $field); // Compute offset. _memoffset_offset_from!(field_ptr, base_ptr) }}; } #[cfg(test)] mod tests { #[test] fn offset_simple() { #[repr(C)] struct Foo { a: u32, b: [u8; 2], c: i64, } assert_eq!(offset_of!(Foo, a), 0); assert_eq!(offset_of!(Foo, b), 4); assert_eq!(offset_of!(Foo, c), 8); } #[test] #[cfg_attr(miri, ignore)] // this creates unaligned references fn offset_simple_packed() { #[repr(C, packed)] struct Foo { a: u32, b: [u8; 2], c: i64, } assert_eq!(offset_of!(Foo, a), 0); assert_eq!(offset_of!(Foo, b), 4); assert_eq!(offset_of!(Foo, c), 6); } #[test] fn tuple_struct() { #[repr(C)] struct Tup(i32, i32); assert_eq!(offset_of!(Tup, 0), 0); assert_eq!(offset_of!(Tup, 1), 4); } #[test] fn path() { mod sub { #[repr(C)] pub struct Foo { pub x: u32, } } assert_eq!(offset_of!(sub::Foo, x), 0); } #[test] fn inside_generic_method() { struct Pair<T, U>(T, U); fn foo<T, U>(_: Pair<T, U>) -> usize { offset_of!(Pair<T, U>, 1) } assert_eq!(foo(Pair(0, 0)), 4); } #[cfg(tuple_ty)] #[test] fn test_tuple_offset() { let f = (0i32, 0.0f32, 0u8); let f_ptr = &f as *const _; let f1_ptr = &f.1 as *const _; assert_eq!( f1_ptr as usize - f_ptr as usize, offset_of_tuple!((i32, f32, u8), 1) ); } #[test] fn test_raw_field() { #[repr(C)] struct Foo { a: u32, b: [u8; 2], c: i64, } let f: Foo = Foo { a: 0, b: [0, 0], c: 0, }; let f_ptr = &f as *const _; assert_eq!(f_ptr as usize + 0, raw_field!(f_ptr, Foo, a) as usize); assert_eq!(f_ptr as usize + 4, raw_field!(f_ptr, Foo, b) as usize); assert_eq!(f_ptr as usize + 8, raw_field!(f_ptr, Foo, c) as usize); } #[cfg(tuple_ty)] #[test] fn test_raw_field_tuple() { let t = (0u32, 0u8, false); let t_ptr = &t as *const _; let t_addr = t_ptr as usize; assert_eq!( &t.0 as *const _ as usize - t_addr, raw_field_tuple!(t_ptr, (u32, u8, bool), 0) as usize - t_addr ); assert_eq!( &t.1 as *const _ as usize - t_addr, raw_field_tuple!(t_ptr, (u32, u8, bool), 1) as usize - t_addr ); assert_eq!( &t.2 as *const _ as usize - t_addr, raw_field_tuple!(t_ptr, (u32, u8, bool), 2) as usize - t_addr ); } #[cfg(feature = "unstable_const")] #[test] fn const_offset() { #[repr(C)] struct Foo { a: u32, b: [u8; 2], c: i64, } assert_eq!([0; offset_of!(Foo, b)].len(), 4); } #[cfg(feature = "unstable_const")] #[test] fn const_fn_offset() { const fn test_fn() -> usize { #[repr(C)] struct Foo { a: u32, b: [u8; 2], c: i64, } offset_of!(Foo, b) } assert_eq!([0; test_fn()].len(), 4); } }