Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use crate::math::{Isometry, Point, Vector};
use crate::query::{self, Contact};
use crate::shape::{FeatureId, Shape};
use na::{self, RealField, Unit};

/// A shape geometry type at the neighborhood of a point.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum NeighborhoodGeometry<N: RealField> {
    /// A punctual approximation.
    Point,
    /// A line approximation.
    Line(Unit<Vector<N>>),
    /// A planar approximation.
    Plane(Unit<Vector<N>>),
}

/// The approximation of a shape on the neighborhood of a point.
#[derive(Copy, Clone, Debug)]
pub struct LocalShapeApproximation<N: RealField> {
    // XXX: currently, there is no explicit representation
    // of the point where the approximation occurs in terms
    // of shape-specific parameters. That's because we work
    // so far with polyhedral approximations. Thus, it is
    // sufficient to known the feature alone to derive an
    // approximation.
    // In the future, we might want to:
    // - Use `parameters` as a set of shape-dependent coordinates giving the location of the
    //   point on it.
    // - Use `point` as the local-space point where the approximation occurs. It should be
    //   computed by the shape from the parameters.
    /// The shape feature the point lies on.
    pub feature: FeatureId,
    /// The point where approximation is computed.
    pub point: Point<N>,
    /// The approximation geometry.
    pub geometry: NeighborhoodGeometry<N>,
}

impl<N: RealField> LocalShapeApproximation<N> {
    /// Initializes a new local shape approximation at `point`.
    pub fn new(feature: FeatureId, point: Point<N>, geometry: NeighborhoodGeometry<N>) -> Self {
        LocalShapeApproximation {
            feature,
            point,
            geometry,
        }
    }
}

/// Local contact kinematic of a pair of solids around two given points.
///
/// This is used to update the localization of contact points between two solids
/// from one frame to another. To achieve this, the local shape of the solids
/// around the given points are approximated by either dilated lines (unbounded
/// cylinders), planes, dilated points (spheres).
#[derive(Copy, Clone, Debug)]
pub struct ContactKinematic<N: RealField> {
    approx1: LocalShapeApproximation<N>,
    approx2: LocalShapeApproximation<N>,

    margin1: N,
    margin2: N,
}

impl<N: RealField> ContactKinematic<N> {
    /// Initializes an empty contact kinematic.
    ///
    /// All the contact kinematic information must be filled using methods
    /// prefixed by `set_`.
    pub fn new() -> Self {
        let approx = LocalShapeApproximation::new(
            FeatureId::Unknown,
            Point::origin(),
            NeighborhoodGeometry::Point,
        );

        ContactKinematic {
            margin1: na::zero(),
            margin2: na::zero(),
            approx1: approx.clone(),
            approx2: approx,
        }
    }

    /// Applies the given transformation to the first set of contact information.
    pub fn transform1(&mut self, m: &Isometry<N>) {
        self.approx1.point = m * self.approx1.point;

        match &mut self.approx1.geometry {
            NeighborhoodGeometry::Point => {}
            NeighborhoodGeometry::Plane(n) | NeighborhoodGeometry::Line(n) => {
                *n = m * &*n;
            }
        }
    }

    /// Applies the given transformation to the second set of contact information.
    pub fn transform2(&mut self, m: &Isometry<N>) {
        self.approx2.point = m * self.approx2.point;

        match &mut self.approx2.geometry {
            NeighborhoodGeometry::Point => {}
            NeighborhoodGeometry::Plane(n) | NeighborhoodGeometry::Line(n) => {
                *n = m * &*n;
            }
        }
    }

    /// The dilation of the first solid.
    pub fn dilation1(&self) -> N {
        self.margin1
    }

    /// The dilation of the second solid.
    pub fn dilation2(&self) -> N {
        self.margin2
    }

    /// The tracked point in local space of the first solid.
    ///
    /// This may not correspond to the contact point in the local
    /// space of the first since it does not takes the dilation
    /// into account.
    // FIXME: we might want to remove this in the future as it is not generalizable to surfaces.
    pub fn local1(&self) -> Point<N> {
        self.approx1.point
    }

    /// The tracked point in local space of the second solid.
    ///
    /// This may not correspond to the contact point in the local
    /// space of the second solid since it does not takes the dilation
    /// into account.
    // FIXME: we might want to remove this in the future as it is not generalizable to surfaces.
    pub fn local2(&self) -> Point<N> {
        self.approx2.point
    }

    /// The shape-dependent identifier of the feature of the first solid
    /// on which lies the contact point.
    pub fn feature1(&self) -> FeatureId {
        self.approx1.feature
    }

    /// The shape-dependent identifier of the feature of the second solid
    /// on which lies the contact point.
    pub fn feature2(&self) -> FeatureId {
        self.approx2.feature
    }

    /// Sets the shape-dependent identifier of the feature of the first solid
    /// on which lies the contact point.
    pub fn set_feature1(&mut self, f: FeatureId) {
        self.approx1.feature = f
    }

    /// Sets the shape-dependent identifier of the feature of the second solid
    /// on which lies the contact point.
    pub fn set_feature2(&mut self, f: FeatureId) {
        self.approx2.feature = f
    }

    /// Sets the dilation of the first solid.
    pub fn set_dilation1(&mut self, margin: N) {
        self.margin1 = margin;
    }

    /// Sets the dilation of the second solid.
    pub fn set_dilation2(&mut self, margin: N) {
        self.margin2 = margin;
    }

    /// The local approximation of the first shape.
    pub fn approx1(&self) -> &LocalShapeApproximation<N> {
        &self.approx1
    }

    /// The local approximation of the first shape.
    pub fn approx2(&self) -> &LocalShapeApproximation<N> {
        &self.approx2
    }

    /// The local approximation of the first shape.
    pub fn approx1_mut(&mut self) -> &mut LocalShapeApproximation<N> {
        &mut self.approx1
    }

    /// The local approximation of the second shape.
    pub fn approx2_mut(&mut self) -> &mut LocalShapeApproximation<N> {
        &mut self.approx2
    }

    /// Sets the local approximation of the first shape.
    pub fn set_approx1(
        &mut self,
        feature: FeatureId,
        point: Point<N>,
        geom: NeighborhoodGeometry<N>,
    ) {
        self.approx1 = LocalShapeApproximation::new(feature, point, geom);
    }

    /// Sets the local approximation of the second shape.
    pub fn set_approx2(
        &mut self,
        feature: FeatureId,
        point: Point<N>,
        geom: NeighborhoodGeometry<N>,
    ) {
        self.approx2 = LocalShapeApproximation::new(feature, point, geom);
    }

    /// Computes the updated contact points with the new positions of the solids.
    ///
    /// The vector `default_normal1` is the normal of the resulting contact
    /// in the rare case where the contact normal cannot be determined by the update.
    /// Typically, this should be set to the latest contact normal known.
    pub fn contact(
        &self,
        m1: &Isometry<N>,
        s1: &dyn Shape<N>,
        deformations1: Option<&[N]>,
        m2: &Isometry<N>,
        s2: &dyn Shape<N>,
        deformations2: Option<&[N]>,
        default_normal1: &Unit<Vector<N>>,
    ) -> Option<Contact<N>> {
        let normal;
        let mut depth;

        let mut world1 = m1 * self.approx1.point;
        let mut world2 = m2 * self.approx2.point;

        match (&self.approx1.geometry, &self.approx2.geometry) {
            (NeighborhoodGeometry::Plane(normal1), NeighborhoodGeometry::Point) => {
                normal = m1 * normal1;
                depth = -normal.dot(&(world2 - world1));
                world1 = world2 + *normal * depth;
            }
            (NeighborhoodGeometry::Point, NeighborhoodGeometry::Plane(normal2)) => {
                let world_normal2 = m2 * normal2;
                depth = -world_normal2.dot(&(world1 - world2));
                world2 = world1 + *world_normal2 * depth;
                normal = -world_normal2;
            }
            (NeighborhoodGeometry::Point, NeighborhoodGeometry::Point) => {
                if let Some((n, d)) = Unit::try_new_and_get(world2 - world1, N::default_epsilon()) {
                    if s1.tangent_cone_contains_dir(self.approx1.feature, m1, deformations1, &n)
                        || s2.tangent_cone_contains_dir(
                            self.approx2.feature,
                            m2,
                            deformations2,
                            &-n,
                        )
                    {
                        depth = d;
                        normal = -n;
                    } else {
                        depth = -d;
                        normal = n;
                    }
                } else {
                    depth = na::zero();
                    normal = m1 * default_normal1;
                }
            }
            (NeighborhoodGeometry::Line(dir1), NeighborhoodGeometry::Point) => {
                let world_dir1 = m1 * dir1;
                let mut shift = world2 - world1;
                let proj = world_dir1.dot(&shift);
                shift -= dir1.into_inner() * proj;

                if let Some((n, d)) = Unit::try_new_and_get(shift, na::zero()) {
                    world1 = world2 + (-shift);

                    if s1.tangent_cone_contains_dir(self.approx1.feature, m1, deformations1, &n)
                        || s2.tangent_cone_contains_dir(
                            self.approx2.feature,
                            m2,
                            deformations2,
                            &-n,
                        )
                    {
                        depth = d;
                        normal = -n;
                    } else {
                        depth = -d;
                        normal = n;
                    }
                } else {
                    depth = na::zero();
                    normal = m1 * default_normal1;
                }
            }
            (NeighborhoodGeometry::Point, NeighborhoodGeometry::Line(dir2)) => {
                let world_dir2 = m2 * dir2;
                let mut shift = world1 - world2;
                let proj = world_dir2.dot(&shift);
                shift -= dir2.into_inner() * proj;
                // NOTE: we set:
                // shift = world2 - world1
                let shift = -shift;

                if let Some((n, d)) = Unit::try_new_and_get(shift, na::zero()) {
                    world2 = world1 + shift;

                    if s1.tangent_cone_contains_dir(self.approx1.feature, m1, deformations1, &n)
                        || s2.tangent_cone_contains_dir(
                            self.approx2.feature,
                            m2,
                            deformations2,
                            &-n,
                        )
                    {
                        depth = d;
                        normal = -n;
                    } else {
                        depth = -d;
                        normal = n;
                    }
                } else {
                    depth = na::zero();
                    normal = m1 * default_normal1;
                }
            }
            (NeighborhoodGeometry::Line(dir1), NeighborhoodGeometry::Line(dir2)) => {
                let world_dir1 = m1 * dir1;
                let world_dir2 = m2 * dir2;
                let (pt1, pt2) =
                    query::closest_points_line_line(&world1, &world_dir1, &world2, &world_dir2);

                world1 = pt1;
                world2 = pt2;

                if let Some((n, d)) = Unit::try_new_and_get(world2 - world1, na::zero()) {
                    if s1.tangent_cone_contains_dir(self.approx1.feature, m1, deformations1, &n)
                        || s2.tangent_cone_contains_dir(
                            self.approx2.feature,
                            m2,
                            deformations2,
                            &-n,
                        )
                    {
                        depth = d;
                        normal = -n;
                    } else {
                        depth = -d;
                        normal = n;
                    }
                } else {
                    depth = na::zero();
                    normal = m1 * default_normal1;
                }
            }
            _ => {
                return None;
            }
        }

        world1 += normal.into_inner() * self.margin1;
        world2 += normal.into_inner() * (-self.margin2);
        depth += self.margin1 + self.margin2;

        Some(Contact::new(world1, world2, normal, depth))
    }
}