Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
use super::{DecodingError, CHUNCK_BUFFER_SIZE};
use std::io;

use miniz_oxide::inflate::core::{decompress, inflate_flags, DecompressorOxide};
use miniz_oxide::inflate::TINFLStatus;

/// Ergonomics wrapper around `miniz_oxide::inflate::stream` for zlib compressed data.
pub(super) struct ZlibStream {
    /// Current decoding state.
    state: Box<DecompressorOxide>,
    /// If there has been a call to decompress already.
    started: bool,
    /// A buffer of compressed data.
    /// We use this for a progress guarantee. The data in the input stream is chunked as given by
    /// the underlying stream buffer. We will not read any more data until the current buffer has
    /// been fully consumed. The zlib decompression can not fully consume all the data when it is
    /// in the middle of the stream, it will treat full symbols and maybe the last bytes need to be
    /// treated in a special way. The exact reason isn't as important but the interface does not
    /// promise us this. Now, the complication is that the _current_ chunking information of PNG
    /// alone is not enough to determine this as indeed the compressed stream is the concatenation
    /// of all consecutive `IDAT`/`fdAT` chunks. We would need to inspect the next chunk header.
    ///
    /// Thus, there needs to be a buffer that allows fully clearing a chunk so that the next chunk
    /// type can be inspected.
    in_buffer: Vec<u8>,
    /// The logical start of the `in_buffer`.
    in_pos: usize,
    /// Remaining buffered decoded bytes.
    /// The decoder sometimes wants inspect some already finished bytes for further decoding. So we
    /// keep a total of 32KB of decoded data available as long as more data may be appended.
    out_buffer: Vec<u8>,
    /// The cursor position in the output stream as a buffer index.
    out_pos: usize,
}

impl ZlibStream {
    pub(crate) fn new() -> Self {
        ZlibStream {
            state: Box::default(),
            started: false,
            in_buffer: Vec::with_capacity(CHUNCK_BUFFER_SIZE),
            in_pos: 0,
            out_buffer: vec![0; 2 * CHUNCK_BUFFER_SIZE],
            out_pos: 0,
        }
    }

    pub(crate) fn reset(&mut self) {
        self.started = false;
        self.in_buffer.clear();
        self.out_buffer.clear();
        self.out_pos = 0;
        *self.state = DecompressorOxide::default();
    }

    /// Fill the decoded buffer as far as possible from `data`.
    /// On success returns the number of consumed input bytes.
    pub(crate) fn decompress(
        &mut self,
        data: &[u8],
        image_data: &mut Vec<u8>,
    ) -> Result<usize, DecodingError> {
        const BASE_FLAGS: u32 = inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER
            | inflate_flags::TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF
            | inflate_flags::TINFL_FLAG_HAS_MORE_INPUT;

        self.prepare_vec_for_appending();

        let (status, mut in_consumed, out_consumed) = {
            let mut cursor = io::Cursor::new(self.out_buffer.as_mut_slice());
            cursor.set_position(self.out_pos as u64);
            let in_data = if self.in_buffer.is_empty() {
                data
            } else {
                &self.in_buffer[self.in_pos..]
            };
            decompress(&mut self.state, in_data, &mut cursor, BASE_FLAGS)
        };

        if !self.in_buffer.is_empty() {
            self.in_pos += in_consumed;
        }

        if self.in_buffer.len() == self.in_pos {
            self.in_buffer.clear();
            self.in_pos = 0;
        }

        if in_consumed == 0 {
            self.in_buffer.extend_from_slice(data);
            in_consumed = data.len();
        }

        self.started = true;
        self.out_pos += out_consumed;
        self.transfer_finished_data(image_data);

        match status {
            TINFLStatus::Done | TINFLStatus::HasMoreOutput | TINFLStatus::NeedsMoreInput => {
                Ok(in_consumed)
            }
            _err => Err(DecodingError::CorruptFlateStream),
        }
    }

    /// Called after all consecutive IDAT chunks were handled.
    ///
    /// The compressed stream can be split on arbitrary byte boundaries. This enables some cleanup
    /// within the decompressor and flushing additional data which may have been kept back in case
    /// more data were passed to it.
    pub(crate) fn finish_compressed_chunks(
        &mut self,
        image_data: &mut Vec<u8>,
    ) -> Result<(), DecodingError> {
        const BASE_FLAGS: u32 = inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER
            | inflate_flags::TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;

        if !self.started {
            return Ok(());
        }

        let tail = self.in_buffer.split_off(0);
        let tail = &tail[self.in_pos..];

        let mut start = 0;
        loop {
            self.prepare_vec_for_appending();

            let (status, in_consumed, out_consumed) = {
                // TODO: we may be able to avoid the indirection through the buffer here.
                // First append all buffered data and then create a cursor on the image_data
                // instead.
                let mut cursor = io::Cursor::new(self.out_buffer.as_mut_slice());
                cursor.set_position(self.out_pos as u64);
                decompress(&mut self.state, &tail[start..], &mut cursor, BASE_FLAGS)
            };

            start += in_consumed;
            self.out_pos += out_consumed;

            match status {
                TINFLStatus::Done => {
                    self.out_buffer.truncate(self.out_pos as usize);
                    image_data.append(&mut self.out_buffer);
                    return Ok(());
                }
                TINFLStatus::HasMoreOutput => {
                    let transferred = self.transfer_finished_data(image_data);
                    assert!(
                        transferred > 0 || in_consumed > 0 || out_consumed > 0,
                        "No more forward progress made in stream decoding."
                    );
                }
                _err => {
                    return Err(DecodingError::CorruptFlateStream);
                }
            }
        }
    }

    /// Resize the vector to allow allocation of more data.
    fn prepare_vec_for_appending(&mut self) {
        if self.out_buffer.len().saturating_sub(self.out_pos) >= CHUNCK_BUFFER_SIZE {
            return;
        }

        let buffered_len = self.decoding_size(self.out_buffer.len());
        debug_assert!(self.out_buffer.len() <= buffered_len);
        self.out_buffer.resize(buffered_len, 0u8);
    }

    fn decoding_size(&self, len: usize) -> usize {
        // Allocate one more chunk size than currently or double the length while ensuring that the
        // allocation is valid and that any cursor within it will be valid.
        len
            // This keeps the buffer size a power-of-two, required by miniz_oxide.
            .saturating_add(CHUNCK_BUFFER_SIZE.max(len))
            // Ensure all buffer indices are valid cursor positions.
            // Note: both cut off and zero extension give correct results.
            .min(u64::max_value() as usize)
            // Ensure the allocation request is valid.
            // TODO: maximum allocation limits?
            .min(isize::max_value() as usize)
    }

    fn transfer_finished_data(&mut self, image_data: &mut Vec<u8>) -> usize {
        let safe = self.out_pos.saturating_sub(CHUNCK_BUFFER_SIZE);
        // TODO: allocation limits.
        image_data.extend(self.out_buffer.drain(..safe));
        self.out_pos -= safe;
        safe
    }
}