1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
//! Graph algorithms. //! //! It is a goal to gradually migrate the algorithms to be based on graph traits //! so that they are generally applicable. For now, some of these still require //! the `Graph` type. pub mod dominators; use std::cmp::min; use std::collections::{BinaryHeap, HashMap}; use crate::prelude::*; use super::graph::IndexType; use super::unionfind::UnionFind; use super::visit::{ GraphBase, GraphRef, IntoEdgeReferences, IntoEdges, IntoNeighbors, IntoNeighborsDirected, IntoNodeIdentifiers, NodeCompactIndexable, NodeCount, NodeIndexable, Reversed, VisitMap, Visitable, }; use super::EdgeType; use crate::data::Element; use crate::scored::MinScored; use crate::visit::Walker; use crate::visit::{Data, IntoNodeReferences, NodeRef}; pub use super::astar::astar; pub use super::dijkstra::dijkstra; pub use super::isomorphism::{is_isomorphic, is_isomorphic_matching}; pub use super::simple_paths::all_simple_paths; /// \[Generic\] Return the number of connected components of the graph. /// /// For a directed graph, this is the *weakly* connected components. /// # Example /// ```rust /// use petgraph::Graph; /// use petgraph::algo::connected_components; /// use petgraph::prelude::*; /// /// let mut graph : Graph<(),(),Directed>= Graph::new(); /// let a = graph.add_node(()); // node with no weight /// let b = graph.add_node(()); /// let c = graph.add_node(()); /// let d = graph.add_node(()); /// let e = graph.add_node(()); /// let f = graph.add_node(()); /// let g = graph.add_node(()); /// let h = graph.add_node(()); /// /// graph.extend_with_edges(&[ /// (a, b), /// (b, c), /// (c, d), /// (d, a), /// (e, f), /// (f, g), /// (g, h), /// (h, e) /// ]); /// // a ----> b e ----> f /// // ^ | ^ | /// // | v | v /// // d <---- c h <---- g /// /// assert_eq!(connected_components(&graph),2); /// graph.add_edge(b,e,()); /// assert_eq!(connected_components(&graph),1); /// ``` pub fn connected_components<G>(g: G) -> usize where G: NodeCompactIndexable + IntoEdgeReferences, { let mut vertex_sets = UnionFind::new(g.node_bound()); for edge in g.edge_references() { let (a, b) = (edge.source(), edge.target()); // union the two vertices of the edge vertex_sets.union(g.to_index(a), g.to_index(b)); } let mut labels = vertex_sets.into_labeling(); labels.sort(); labels.dedup(); labels.len() } /// \[Generic\] Return `true` if the input graph contains a cycle. /// /// Always treats the input graph as if undirected. pub fn is_cyclic_undirected<G>(g: G) -> bool where G: NodeIndexable + IntoEdgeReferences, { let mut edge_sets = UnionFind::new(g.node_bound()); for edge in g.edge_references() { let (a, b) = (edge.source(), edge.target()); // union the two vertices of the edge // -- if they were already the same, then we have a cycle if !edge_sets.union(g.to_index(a), g.to_index(b)) { return true; } } false } /// \[Generic\] Perform a topological sort of a directed graph. /// /// If the graph was acyclic, return a vector of nodes in topological order: /// each node is ordered before its successors. /// Otherwise, it will return a `Cycle` error. Self loops are also cycles. /// /// To handle graphs with cycles, use the scc algorithms or `DfsPostOrder` /// instead of this function. /// /// If `space` is not `None`, it is used instead of creating a new workspace for /// graph traversal. The implementation is iterative. pub fn toposort<G>( g: G, space: Option<&mut DfsSpace<G::NodeId, G::Map>>, ) -> Result<Vec<G::NodeId>, Cycle<G::NodeId>> where G: IntoNeighborsDirected + IntoNodeIdentifiers + Visitable, { // based on kosaraju scc with_dfs(g, space, |dfs| { dfs.reset(g); let mut finished = g.visit_map(); let mut finish_stack = Vec::new(); for i in g.node_identifiers() { if dfs.discovered.is_visited(&i) { continue; } dfs.stack.push(i); while let Some(&nx) = dfs.stack.last() { if dfs.discovered.visit(nx) { // First time visiting `nx`: Push neighbors, don't pop `nx` for succ in g.neighbors(nx) { if succ == nx { // self cycle return Err(Cycle(nx)); } if !dfs.discovered.is_visited(&succ) { dfs.stack.push(succ); } } } else { dfs.stack.pop(); if finished.visit(nx) { // Second time: All reachable nodes must have been finished finish_stack.push(nx); } } } } finish_stack.reverse(); dfs.reset(g); for &i in &finish_stack { dfs.move_to(i); let mut cycle = false; while let Some(j) = dfs.next(Reversed(g)) { if cycle { return Err(Cycle(j)); } cycle = true; } } Ok(finish_stack) }) } /// \[Generic\] Return `true` if the input directed graph contains a cycle. /// /// This implementation is recursive; use `toposort` if an alternative is /// needed. pub fn is_cyclic_directed<G>(g: G) -> bool where G: IntoNodeIdentifiers + IntoNeighbors + Visitable, { use crate::visit::{depth_first_search, DfsEvent}; depth_first_search(g, g.node_identifiers(), |event| match event { DfsEvent::BackEdge(_, _) => Err(()), _ => Ok(()), }) .is_err() } type DfsSpaceType<G> = DfsSpace<<G as GraphBase>::NodeId, <G as Visitable>::Map>; /// Workspace for a graph traversal. #[derive(Clone, Debug)] pub struct DfsSpace<N, VM> { dfs: Dfs<N, VM>, } impl<N, VM> DfsSpace<N, VM> where N: Copy + PartialEq, VM: VisitMap<N>, { pub fn new<G>(g: G) -> Self where G: GraphRef + Visitable<NodeId = N, Map = VM>, { DfsSpace { dfs: Dfs::empty(g) } } } impl<N, VM> Default for DfsSpace<N, VM> where VM: VisitMap<N> + Default, { fn default() -> Self { DfsSpace { dfs: Dfs { stack: <_>::default(), discovered: <_>::default(), }, } } } /// Create a Dfs if it's needed fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R where G: GraphRef + Visitable, F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R, { let mut local_visitor; let dfs = if let Some(v) = space { &mut v.dfs } else { local_visitor = Dfs::empty(g); &mut local_visitor }; f(dfs) } /// \[Generic\] Check if there exists a path starting at `from` and reaching `to`. /// /// If `from` and `to` are equal, this function returns true. /// /// If `space` is not `None`, it is used instead of creating a new workspace for /// graph traversal. pub fn has_path_connecting<G>( g: G, from: G::NodeId, to: G::NodeId, space: Option<&mut DfsSpace<G::NodeId, G::Map>>, ) -> bool where G: IntoNeighbors + Visitable, { with_dfs(g, space, |dfs| { dfs.reset(g); dfs.move_to(from); dfs.iter(g).any(|x| x == to) }) } /// Renamed to `kosaraju_scc`. #[deprecated(note = "renamed to kosaraju_scc")] pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers, { kosaraju_scc(g) } /// \[Generic\] Compute the *strongly connected components* using [Kosaraju's algorithm][1]. /// /// [1]: https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm /// /// Return a vector where each element is a strongly connected component (scc). /// The order of node ids within each scc is arbitrary, but the order of /// the sccs is their postorder (reverse topological sort). /// /// For an undirected graph, the sccs are simply the connected components. /// /// This implementation is iterative and does two passes over the nodes. pub fn kosaraju_scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers, { let mut dfs = DfsPostOrder::empty(g); // First phase, reverse dfs pass, compute finishing times. // http://stackoverflow.com/a/26780899/161659 let mut finish_order = Vec::with_capacity(0); for i in g.node_identifiers() { if dfs.discovered.is_visited(&i) { continue; } dfs.move_to(i); while let Some(nx) = dfs.next(Reversed(g)) { finish_order.push(nx); } } let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered); dfs.reset(g); let mut sccs = Vec::new(); // Second phase // Process in decreasing finishing time order for i in finish_order.into_iter().rev() { if dfs.discovered.is_visited(&i) { continue; } // Move to the leader node `i`. dfs.move_to(i); let mut scc = Vec::new(); while let Some(nx) = dfs.next(g) { scc.push(nx); } sccs.push(scc); } sccs } /// \[Generic\] Compute the *strongly connected components* using [Tarjan's algorithm][1]. /// /// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm /// /// Return a vector where each element is a strongly connected component (scc). /// The order of node ids within each scc is arbitrary, but the order of /// the sccs is their postorder (reverse topological sort). /// /// For an undirected graph, the sccs are simply the connected components. /// /// This implementation is recursive and does one pass over the nodes. pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable, { #[derive(Copy, Clone, Debug)] struct NodeData { index: Option<usize>, lowlink: usize, on_stack: bool, } #[derive(Debug)] struct Data<'a, G> where G: NodeIndexable, G::NodeId: 'a, { index: usize, nodes: Vec<NodeData>, stack: Vec<G::NodeId>, sccs: &'a mut Vec<Vec<G::NodeId>>, } fn scc_visit<G>(v: G::NodeId, g: G, data: &mut Data<G>) where G: IntoNeighbors + NodeIndexable, { macro_rules! node { ($node:expr) => { data.nodes[g.to_index($node)] }; } if node![v].index.is_some() { // already visited return; } let v_index = data.index; node![v].index = Some(v_index); node![v].lowlink = v_index; node![v].on_stack = true; data.stack.push(v); data.index += 1; for w in g.neighbors(v) { match node![w].index { None => { scc_visit(w, g, data); node![v].lowlink = min(node![v].lowlink, node![w].lowlink); } Some(w_index) => { if node![w].on_stack { // Successor w is in stack S and hence in the current SCC let v_lowlink = &mut node![v].lowlink; *v_lowlink = min(*v_lowlink, w_index); } } } } // If v is a root node, pop the stack and generate an SCC if let Some(v_index) = node![v].index { if node![v].lowlink == v_index { let mut cur_scc = Vec::new(); loop { let w = data.stack.pop().unwrap(); node![w].on_stack = false; cur_scc.push(w); if g.to_index(w) == g.to_index(v) { break; } } data.sccs.push(cur_scc); } } } let mut sccs = Vec::new(); { let map = vec![ NodeData { index: None, lowlink: !0, on_stack: false }; g.node_bound() ]; let mut data = Data { index: 0, nodes: map, stack: Vec::new(), sccs: &mut sccs, }; for n in g.node_identifiers() { scc_visit(n, g, &mut data); } } sccs } /// [Graph] Condense every strongly connected component into a single node and return the result. /// /// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that /// the output is acyclic. /// # Example /// ```rust /// use petgraph::Graph; /// use petgraph::algo::condensation; /// use petgraph::prelude::*; /// /// let mut graph : Graph<(),(),Directed> = Graph::new(); /// let a = graph.add_node(()); // node with no weight /// let b = graph.add_node(()); /// let c = graph.add_node(()); /// let d = graph.add_node(()); /// let e = graph.add_node(()); /// let f = graph.add_node(()); /// let g = graph.add_node(()); /// let h = graph.add_node(()); /// /// graph.extend_with_edges(&[ /// (a, b), /// (b, c), /// (c, d), /// (d, a), /// (b, e), /// (e, f), /// (f, g), /// (g, h), /// (h, e) /// ]); /// /// // a ----> b ----> e ----> f /// // ^ | ^ | /// // | v | v /// // d <---- c h <---- g /// /// let condensed_graph = condensation(graph,false); /// let A = NodeIndex::new(0); /// let B = NodeIndex::new(1); /// assert_eq!(condensed_graph.node_count(), 2); /// assert_eq!(condensed_graph.edge_count(), 9); /// assert_eq!(condensed_graph.neighbors(A).collect::<Vec<_>>(), vec![A, A, A, A]); /// assert_eq!(condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A, B, B, B, B]); /// ``` /// If `make_acyclic` is true, self-loops and multi edges are ignored: /// /// ```rust /// # use petgraph::Graph; /// # use petgraph::algo::condensation; /// # use petgraph::prelude::*; /// # /// # let mut graph : Graph<(),(),Directed> = Graph::new(); /// # let a = graph.add_node(()); // node with no weight /// # let b = graph.add_node(()); /// # let c = graph.add_node(()); /// # let d = graph.add_node(()); /// # let e = graph.add_node(()); /// # let f = graph.add_node(()); /// # let g = graph.add_node(()); /// # let h = graph.add_node(()); /// # /// # graph.extend_with_edges(&[ /// # (a, b), /// # (b, c), /// # (c, d), /// # (d, a), /// # (b, e), /// # (e, f), /// # (f, g), /// # (g, h), /// # (h, e) /// # ]); /// let acyclic_condensed_graph = condensation(graph, true); /// let A = NodeIndex::new(0); /// let B = NodeIndex::new(1); /// assert_eq!(acyclic_condensed_graph.node_count(), 2); /// assert_eq!(acyclic_condensed_graph.edge_count(), 1); /// assert_eq!(acyclic_condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A]); /// ``` pub fn condensation<N, E, Ty, Ix>( g: Graph<N, E, Ty, Ix>, make_acyclic: bool, ) -> Graph<Vec<N>, E, Ty, Ix> where Ty: EdgeType, Ix: IndexType, { let sccs = kosaraju_scc(&g); let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count()); // Build a map from old indices to new ones. let mut node_map = vec![NodeIndex::end(); g.node_count()]; for comp in sccs { let new_nix = condensed.add_node(Vec::new()); for nix in comp { node_map[nix.index()] = new_nix; } } // Consume nodes and edges of the old graph and insert them into the new one. let (nodes, edges) = g.into_nodes_edges(); for (nix, node) in nodes.into_iter().enumerate() { condensed[node_map[nix]].push(node.weight); } for edge in edges { let source = node_map[edge.source().index()]; let target = node_map[edge.target().index()]; if make_acyclic { if source != target { condensed.update_edge(source, target, edge.weight); } } else { condensed.add_edge(source, target, edge.weight); } } condensed } /// \[Generic\] Compute a *minimum spanning tree* of a graph. /// /// The input graph is treated as if undirected. /// /// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually /// return a minimum spanning forest, i.e. a minimum spanning tree for each connected /// component of the graph. /// /// The resulting graph has all the vertices of the input graph (with identical node indices), /// and **|V| - c** edges, where **c** is the number of connected components in `g`. /// /// Use `from_elements` to create a graph from the resulting iterator. pub fn min_spanning_tree<G>(g: G) -> MinSpanningTree<G> where G::NodeWeight: Clone, G::EdgeWeight: Clone + PartialOrd, G: IntoNodeReferences + IntoEdgeReferences + NodeIndexable, { // Initially each vertex is its own disjoint subgraph, track the connectedness // of the pre-MST with a union & find datastructure. let subgraphs = UnionFind::new(g.node_bound()); let edges = g.edge_references(); let mut sort_edges = BinaryHeap::with_capacity(edges.size_hint().0); for edge in edges { sort_edges.push(MinScored( edge.weight().clone(), (edge.source(), edge.target()), )); } MinSpanningTree { graph: g, node_ids: Some(g.node_references()), subgraphs, sort_edges, node_map: HashMap::new(), node_count: 0, } } /// An iterator producing a minimum spanning forest of a graph. pub struct MinSpanningTree<G> where G: Data + IntoNodeReferences, { graph: G, node_ids: Option<G::NodeReferences>, subgraphs: UnionFind<usize>, sort_edges: BinaryHeap<MinScored<G::EdgeWeight, (G::NodeId, G::NodeId)>>, node_map: HashMap<usize, usize>, node_count: usize, } impl<G> Iterator for MinSpanningTree<G> where G: IntoNodeReferences + NodeIndexable, G::NodeWeight: Clone, G::EdgeWeight: PartialOrd, { type Item = Element<G::NodeWeight, G::EdgeWeight>; fn next(&mut self) -> Option<Self::Item> { let g = self.graph; if let Some(ref mut iter) = self.node_ids { if let Some(node) = iter.next() { self.node_map.insert(g.to_index(node.id()), self.node_count); self.node_count += 1; return Some(Element::Node { weight: node.weight().clone(), }); } } self.node_ids = None; // Kruskal's algorithm. // Algorithm is this: // // 1. Create a pre-MST with all the vertices and no edges. // 2. Repeat: // // a. Remove the shortest edge from the original graph. // b. If the edge connects two disjoint trees in the pre-MST, // add the edge. while let Some(MinScored(score, (a, b))) = self.sort_edges.pop() { // check if the edge would connect two disjoint parts let (a_index, b_index) = (g.to_index(a), g.to_index(b)); if self.subgraphs.union(a_index, b_index) { let (&a_order, &b_order) = match (self.node_map.get(&a_index), self.node_map.get(&b_index)) { (Some(a_id), Some(b_id)) => (a_id, b_id), _ => panic!("Edge references unknown node"), }; return Some(Element::Edge { source: a_order, target: b_order, weight: score, }); } } None } } /// An algorithm error: a cycle was found in the graph. #[derive(Clone, Debug, PartialEq)] pub struct Cycle<N>(N); impl<N> Cycle<N> { /// Return a node id that participates in the cycle pub fn node_id(&self) -> N where N: Copy, { self.0 } } /// An algorithm error: a cycle of negative weights was found in the graph. #[derive(Clone, Debug, PartialEq)] pub struct NegativeCycle(()); /// \[Generic\] Compute shortest paths from node `source` to all other. /// /// Using the [Bellman–Ford algorithm][bf]; negative edge costs are /// permitted, but the graph must not have a cycle of negative weights /// (in that case it will return an error). /// /// On success, return one vec with path costs, and another one which points /// out the predecessor of a node along a shortest path. The vectors /// are indexed by the graph's node indices. /// /// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm /// /// # Example /// ```rust /// use petgraph::Graph; /// use petgraph::algo::bellman_ford; /// use petgraph::prelude::*; /// /// let mut g = Graph::new(); /// let a = g.add_node(()); // node with no weight /// let b = g.add_node(()); /// let c = g.add_node(()); /// let d = g.add_node(()); /// let e = g.add_node(()); /// let f = g.add_node(()); /// g.extend_with_edges(&[ /// (0, 1, 2.0), /// (0, 3, 4.0), /// (1, 2, 1.0), /// (1, 5, 7.0), /// (2, 4, 5.0), /// (4, 5, 1.0), /// (3, 4, 1.0), /// ]); /// /// // Graph represented with the weight of each edge /// // /// // 2 1 /// // a ----- b ----- c /// // | 4 | 7 | /// // d f | 5 /// // | 1 | 1 | /// // \------ e ------/ /// /// let path = bellman_ford(&g, a); /// assert_eq!(path, Ok((vec![0.0 , 2.0, 3.0, 4.0, 5.0, 6.0], /// vec![None, Some(a),Some(b),Some(a), Some(d), Some(e)] /// )) /// ); /// // Node f (indice 5) can be reach from a with a path costing 6. /// // Predecessor of f is Some(e) which predecessor is Some(d) which predecessor is Some(a). /// // Thus the path from a to f is a <-> d <-> e <-> f /// /// let graph_with_neg_cycle = Graph::<(), f32, Undirected>::from_edges(&[ /// (0, 1, -2.0), /// (0, 3, -4.0), /// (1, 2, -1.0), /// (1, 5, -25.0), /// (2, 4, -5.0), /// (4, 5, -25.0), /// (3, 4, -1.0), /// ]); /// /// assert!(bellman_ford(&graph_with_neg_cycle, NodeIndex::new(0)).is_err()); /// ``` pub fn bellman_ford<G>( g: G, source: G::NodeId, ) -> Result<(Vec<G::EdgeWeight>, Vec<Option<G::NodeId>>), NegativeCycle> where G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable, G::EdgeWeight: FloatMeasure, { let mut predecessor = vec![None; g.node_bound()]; let mut distance = vec![<_>::infinite(); g.node_bound()]; let ix = |i| g.to_index(i); distance[ix(source)] = <_>::zero(); // scan up to |V| - 1 times. for _ in 1..g.node_count() { let mut did_update = false; for i in g.node_identifiers() { for edge in g.edges(i) { let i = edge.source(); let j = edge.target(); let w = *edge.weight(); if distance[ix(i)] + w < distance[ix(j)] { distance[ix(j)] = distance[ix(i)] + w; predecessor[ix(j)] = Some(i); did_update = true; } } } if !did_update { break; } } // check for negative weight cycle for i in g.node_identifiers() { for edge in g.edges(i) { let j = edge.target(); let w = *edge.weight(); if distance[ix(i)] + w < distance[ix(j)] { //println!("neg cycle, detected from {} to {}, weight={}", i, j, w); return Err(NegativeCycle(())); } } } Ok((distance, predecessor)) } /// Return `true` if the graph is bipartite. A graph is bipartite if it's nodes can be divided into /// two disjoint and indepedent sets U and V such that every edge connects U to one in V. This /// algorithm implements 2-coloring algorithm based on the BFS algorithm. /// /// Always treats the input graph as if undirected. pub fn is_bipartite_undirected<G, N, VM>(g: G, start: N) -> bool where G: GraphRef + Visitable<NodeId = N, Map = VM> + IntoNeighbors<NodeId = N>, N: Copy + PartialEq + std::fmt::Debug, VM: VisitMap<N>, { let mut red = g.visit_map(); red.visit(start); let mut blue = g.visit_map(); let mut stack = ::std::collections::VecDeque::new(); stack.push_front(start); while let Some(node) = stack.pop_front() { let is_red = red.is_visited(&node); let is_blue = blue.is_visited(&node); assert!(is_red ^ is_blue); for neighbour in g.neighbors(node) { let is_neigbour_red = red.is_visited(&neighbour); let is_neigbour_blue = blue.is_visited(&neighbour); if (is_red && is_neigbour_red) || (is_blue && is_neigbour_blue) { return false; } if !is_neigbour_red && !is_neigbour_blue { //hasn't been visited yet match (is_red, is_blue) { (true, false) => { blue.visit(neighbour); } (false, true) => { red.visit(neighbour); } (_, _) => { panic!("Invariant doesn't hold"); } } stack.push_back(neighbour); } } } true } use std::fmt::Debug; use std::ops::Add; /// Associated data that can be used for measures (such as length). pub trait Measure: Debug + PartialOrd + Add<Self, Output = Self> + Default + Clone {} impl<M> Measure for M where M: Debug + PartialOrd + Add<M, Output = M> + Default + Clone {} /// A floating-point measure. pub trait FloatMeasure: Measure + Copy { fn zero() -> Self; fn infinite() -> Self; } impl FloatMeasure for f32 { fn zero() -> Self { 0. } fn infinite() -> Self { 1. / 0. } } impl FloatMeasure for f64 { fn zero() -> Self { 0. } fn infinite() -> Self { 1. / 0. } }