1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#![doc(html_root_url = "https://docs.rs/slice-of-array/0.2.1")] //! Extension traits for viewing a slice as a slice of arrays or vice versa. //! //! Provides the following methods on `[T]`: //! //! * **[`nest`]**: `&[T] -> &[[T; n]]` //! * **[`flat`]**: `&[[T; n]] -> &[T]` //! * **[`as_array`]**: `&[T] -> &[T; n]` (the reverse is //! already provided by a coercion) //! * **`nest_mut`, `flat_mut`, `as_mut_array`** for `&mut [_]`. //! //! Altogether, these let you swap between arbitrary representations //! of contiguous, `T`-aligned streams of `T` data. For instance, //! to view a `[[i32; 6]; 5]` as a `&[[[i32; 3]; 2]; 5]`, //! one could write //! //! ``` //! # // FIXME: Dumb/confusing example. I actually wrote it wrong //! # // the first time, calling `flat()` twice because it //! # // didn't occur to me that the outer '; 5' is already //! # // automatically eliminated by coercion. //! # // //! # // Almost makes a case for providing `.as_slice()` //! # // as an explicit form of this coercion. //! # //! # use ::slice_of_array::prelude::*; //! # let _ = || { //! # let x: [[i32; 6]; 5] = unimplemented!(); //! # let _: &[[[i32; 3]; 2]; 5] = //! x.flat().nest().nest().as_array() //! # ; //! # }; //! ``` //! //! Type inference generally works quite well, and as long as the //! final shape is unambiguous there is no need to annotate types //! in the middle of the method chain. //! //! In cases where type inference is unable to determine the target //! array size, one can use a turbofish: e.g .`x.nest::<[_; 3]>()`. //! //! ``` //! use ::slice_of_array::prelude::*; //! //! let vec = vec![[2i32, 2, 2], [7, 7, 7], [4, 4, 4], [1, 1, 1]]; //! assert_eq!(vec.flat(), &[2, 2, 2, 7, 7, 7, 4, 4, 4, 1, 1, 1]); //! //! // note: this requires an annotation only due to polymorphism in PartialEq //! let slc = vec.nest::<[_; 2]>(); //! assert_eq!(slc, &[[[2i32, 2, 2], [7, 7, 7]], [[ 4, 4, 4], [1, 1, 1]]]); //! ``` //! //! [`nest`] and [`as_array`] panic on failure rather than returning options. //! The rationale is that it is believed that these these conversions are //! seldom needed on arbitrary user data which may be the wrong size; rather, //! they are most likely used when bridging the gap between APIs that work //! with flattened slices and APIs that work with slices of arrays. //! //! Zero-cost conversions in owned data (e.g. between `Vec<T>` //! and `Vec<[T; n]>`) are not provided, and are probably impossible //! in consideration of e.g. custom allocators. If you need to //! convert between such types, you can use these traits in tandem //! with `<[T]>::to_vec` to perform a copy: //! //! ``` //! # use ::slice_of_array::prelude::*; //! let vec = vec![[2i32, 2, 2], [7, 7, 7]]; //! //! // copying into a Vec<i32> //! let flattened = vec.flat().to_vec(); //! assert_eq!(flattened, vec![2i32, 2, 2, 7, 7, 7]); //! ``` //! //! [`nest`]: trait.SliceNestExt.html#tymethod.nest //! [`flat`]: trait.SliceFlatExt.html#tymethod.flat //! [`as_array`]: trait.SliceArrayExt.html#tymethod.as_array #[cfg(test)] #[macro_use] extern crate version_sync; pub mod prelude { pub use super::SliceFlatExt; pub use super::SliceNestExt; pub use super::SliceArrayExt; } /// Marker trait used in bounds of `Slice{Flat,Nest,Array}Ext`. /// /// This marks the array types approved for use with `slice_of_array`. /// /// It is deliberately not implemented for arrays of size 0, /// because said traits are otherwise perfect isomorphisms for /// the inputs that they don't fail on; /// Having `.flat().nest()` turn a `&[[i32; 0]]` of length 18 /// into a `&[[i32; 0]]` of length 0 gives me the heebie jeebies. /// /// # Safety /// /// For any implementation, `Self` must have the same size and /// alignment as `[Self::Element; Self::LEN]`. Furthermore, you /// must be comfortable with the possibility of `[Self]` being /// reinterpreted bitwise as `[[Self::Element; Self::LEN]]` (or /// vice versa) in any possible context. /// /// # Notice /// /// **Please do NOT use this trait in public interfaces in your code.** /// /// `slice_of_array` is not yet 1.0, is not ready (or even designed) /// to be used as a public dependency. /// /// However, feel free to implement this trait on your own private /// wrapper types around arrays. (this use case is explicitly supported /// because the author does it himself, and quite frankly, it's pretty /// convenient!) pub unsafe trait IsSliceomorphic: Sized { type Element; const LEN: usize; } macro_rules! impl_approved_array { ($($n:tt)+) => {$( unsafe impl<T> IsSliceomorphic for [T; $n] { type Element = T; const LEN: usize = $n; } )+}; } impl_approved_array!{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 256 512 1024 2048 4096 8192 1000 10000 } // Validate some known assumptions of IsSliceomorphic "at runtime," // in a manner which should get optimized into thin air. fn validate_some_assumptions<V: IsSliceomorphic>() { use ::std::mem::{align_of, size_of}; assert_eq!( align_of::<V::Element>(), align_of::<V>()); assert_eq!( V::LEN * size_of::<V::Element>(), size_of::<V>()); } /// Permits viewing a slice of arrays as a flat slice. /// /// # Implementors /// /// The methods are available on `&[[T; n]]` and `&mut [[T; n]]` /// for all `T`, and `1 <= n <= 128` (and a couple other sizes). /// Of course, they are also available on `Vec<[T; n]>` and any /// other type that derefs or unsizes to `[[T; n]]`. /// /// # Notice /// /// The existence of this trait is an implementation detail. /// /// **Please do NOT use this trait as a generic bound in your code.** pub trait SliceFlatExt<T> { /// View `&[[T; n]]` as `&[T]`. fn flat(&self) -> &[T]; /// View `&mut [[T; n]]` as `&mut [T]` fn flat_mut(&mut self) -> &mut [T]; } /// Permits viewing a slice as a slice of arrays. /// /// The new array dimension can often be inferred. /// When it is not, a turbofish can be used: `.nest::<[_; 3]>()`. /// /// # Panics /// /// All methods panic if the input length is not divisible by `n`. /// /// # Implementors /// /// The methods are available on `&[T]` and `&mut [T]` for all `T`. /// Of course, they are also available on `Vec<T>` and any other type /// that derefs or unsizes to `[T]`. /// /// # Notice /// /// The existence of this trait is an implementation detail. /// /// **Please do NOT use this trait as a generic bound in your code.** pub trait SliceNestExt<T> { /// View `&[T]` as `&[[T; n]]` without copying. fn nest<V: IsSliceomorphic<Element=T>>(&self) -> &[V]; /// View `&mut [T]` as `&mut [[T; n]]` without copying. fn nest_mut<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut [V]; } /// Permits viewing a slice as an array. /// /// The output array length can often be inferred. /// When it is not, a turbofish can be used: `.as_array::<[_; 3]>()`. /// /// # Panics /// /// All methods panic if the slice is not exactly the requested length. /// /// # Implementors /// /// The methods are available on `&[T]` and `&mut [T]` for all `T`. /// Of course, they are also available on `Vec<T>` and any other type /// that derefs or unsizes to `[T]`. /// /// # Notice /// /// The existence of this trait is an implementation detail. /// /// **Please do NOT use this trait as a generic bound in your code.** pub trait SliceArrayExt<T> { /// View `&[T]` as `&[T; n]`. fn as_array<V: IsSliceomorphic<Element=T>>(&self) -> &V; /// View `&mut [T]` as `&mut [T; n]`. fn as_mut_array<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut V; /// Clone `&[T]` to `[T; n]`. /// /// This is provided because `.as_array().clone()` tends to cause trouble for /// type inference. fn to_array<V: IsSliceomorphic<Element=T>>(&self) -> V where V: Clone { self.as_array::<V>().clone() } } impl<V: IsSliceomorphic> SliceFlatExt<V::Element> for [V] { fn flat(&self) -> &[V::Element] { // UNSAFETY: (::std::slice::from_raw_parts) // - pointer must be non-null (even for zero-length) // - pointer must be aligned // - pointer must be valid for given size // - lifetimes are unchecked unsafe { validate_some_assumptions::<V>(); ::std::slice::from_raw_parts( self.as_ptr() as *const _, self.len() * V::LEN, ) } } fn flat_mut(&mut self) -> &mut [V::Element] { // UNSAFETY: (::std::slice::from_raw_parts_mut) // - pointer must be non-null (even for zero-length) // - pointer must be aligned // - pointer must be valid for given size // - lifetimes are unchecked // - aliasing guarantees of &mut are unchecked unsafe { validate_some_assumptions::<V>(); ::std::slice::from_raw_parts_mut( self.as_mut_ptr() as *mut _, self.len() * V::LEN, ) } } } impl<T> SliceNestExt<T> for [T] { fn nest<V: IsSliceomorphic<Element=T>>(&self) -> &[V] { validate_some_assumptions::<V>(); assert_eq!(0, self.len() % V::LEN, "cannot view slice of length {} as &[[_; {}]]", self.len(), V::LEN); // UNSAFETY: (::std::slice::from_raw_parts) // - pointer must be non-null (even for zero-length) // - pointer must be aligned // - pointer must be valid for given size // - lifetimes are unchecked unsafe { ::std::slice::from_raw_parts( self.as_ptr() as *const _, self.len() / V::LEN, )} } fn nest_mut<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut [V] { validate_some_assumptions::<V>(); assert_eq!(0, self.len() % V::LEN, "cannot view slice of length {} as &mut [[_; {}]]", self.len(), V::LEN); // UNSAFETY: (::std::slice::from_raw_parts_mut) // - pointer must be non-null (even for zero-length) // - pointer must be aligned // - pointer must be valid for given size // - lifetimes are unchecked // - aliasing guarantees of &mut are unchecked unsafe { ::std::slice::from_raw_parts_mut( self.as_ptr() as *mut _, self.len() / V::LEN, )} } } impl<T> SliceArrayExt<T> for [T] { fn as_array<V: IsSliceomorphic<Element=T>>(&self) -> &V { assert_eq!(self.len(), V::LEN, "cannot view slice of length {} as &[_; {}]", self.len(), V::LEN); &self.nest()[0] } fn as_mut_array<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut V { assert_eq!(self.len(), V::LEN, "cannot view slice of length {} as &mut [_; {}]", self.len(), V::LEN); &mut self.nest_mut()[0] } } #[cfg(test)] mod tests { pub use super::prelude::*; #[test] fn inference_lattice() { // Checks that chaining nest().nest() or nest().as_array() // can be done without explicit annotations on the first method call. let mut v = vec![(); 9]; { let _: &[[(); 3]; 3] = v.nest().as_array(); } { let _: &[[[(); 3]; 3]] = v.nest().nest(); } { let _: &mut [[(); 3]; 3] = v.nest_mut().as_mut_array(); } { let _: &mut [[[(); 3]; 3]] = v.nest_mut().nest_mut(); } { let _: [[(); 3]; 3] = v.nest().to_array(); } { let _: Vec<[(); 3]> = v.nest().to_vec(); } } mod failures { use super::super::*; #[test] #[should_panic(expected = "cannot view slice of length 8")] fn fail_nest_not_multiple() { let v = vec![(); 8]; let _: &[[(); 3]] = v.nest(); } #[test] #[should_panic(expected = "cannot view slice of length 8")] fn nest_mut_not_multiple() { let mut v = vec![(); 8]; let _: &mut [[(); 3]] = v.nest_mut(); } // bad array size tests; // we try converting slices of length 1 or 6 into a length 3 array. // These sizes were chosen to catch accidental acceptance in // the case of sizes that divide evenly #[test] #[should_panic(expected = "cannot view slice of length 1")] fn as_array_too_small() { let v = vec![(); 1]; let _: &[(); 3] = v.as_array(); } #[test] #[should_panic(expected = "cannot view slice of length 6")] fn as_array_too_large() { let v = vec![(); 6]; let _: &[(); 3] = v.as_array(); } #[test] #[should_panic(expected = "cannot view slice of length 1")] fn as_mut_array_too_small() { let mut v = vec![(); 1]; let _: &mut [(); 3] = v.as_mut_array(); } #[test] #[should_panic(expected = "cannot view slice of length 6")] fn as_mut_array_too_large() { let mut v = vec![(); 6]; let _: &mut [(); 3] = v.as_mut_array(); } } mod dox { #[test] fn test_readme_version() { assert_markdown_deps_updated!("README.md"); } #[test] fn test_html_root_url() { assert_html_root_url_updated!("lib.rs"); } } }