Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#![doc(html_root_url = "https://docs.rs/slice-of-array/0.2.1")]

//! Extension traits for viewing a slice as a slice of arrays or vice versa.
//!
//! Provides the following methods on `[T]`:
//!
//!  * **[`nest`]**: `&[T] -> &[[T; n]]`
//!  * **[`flat`]**: `&[[T; n]] -> &[T]`
//!  * **[`as_array`]**: `&[T] -> &[T; n]` (the reverse is
//!    already provided by a coercion)
//!  * **`nest_mut`, `flat_mut`, `as_mut_array`** for `&mut [_]`.
//!
//! Altogether, these let you swap between arbitrary representations
//! of contiguous, `T`-aligned streams of `T` data.  For instance,
//! to view a `[[i32; 6]; 5]` as a `&[[[i32; 3]; 2]; 5]`,
//! one could write
//!
//! ```
//! # // FIXME: Dumb/confusing example. I actually wrote it wrong
//! # //        the first time, calling `flat()` twice because it
//! # //        didn't occur to me that the outer '; 5' is already
//! # //        automatically eliminated by coercion.
//! # //
//! # //        Almost makes a case for providing `.as_slice()`
//! # //        as an explicit form of this coercion.
//! #
//! # use ::slice_of_array::prelude::*;
//! # let _ = || {
//! #     let x: [[i32; 6]; 5] = unimplemented!();
//! #     let _: &[[[i32; 3]; 2]; 5] =
//! x.flat().nest().nest().as_array()
//! #     ;
//! # };
//! ```
//!
//! Type inference generally works quite well, and as long as the
//! final shape is unambiguous there is no need to annotate types
//! in the middle of the method chain.
//!
//! In cases where type inference is unable to determine the target
//! array size, one can use a turbofish: e.g .`x.nest::<[_; 3]>()`.
//!
//! ```
//! use ::slice_of_array::prelude::*;
//!
//! let vec = vec![[2i32, 2, 2], [7, 7, 7], [4, 4, 4], [1, 1, 1]];
//! assert_eq!(vec.flat(), &[2, 2, 2, 7, 7, 7, 4, 4, 4, 1, 1, 1]);
//!
//! // note: this requires an annotation only due to polymorphism in PartialEq
//! let slc = vec.nest::<[_; 2]>();
//! assert_eq!(slc, &[[[2i32, 2, 2], [7, 7, 7]], [[ 4, 4, 4], [1, 1, 1]]]);
//! ```
//!
//! [`nest`] and [`as_array`] panic on failure rather than returning options.
//! The rationale is that it is believed that these these conversions are
//! seldom needed on arbitrary user data which may be the wrong size; rather,
//! they are most likely used when bridging the gap between APIs that work
//! with flattened slices and APIs that work with slices of arrays.
//!
//! Zero-cost conversions in owned data (e.g. between `Vec<T>`
//! and `Vec<[T; n]>`) are not provided, and are probably impossible
//! in consideration of e.g. custom allocators. If you need to
//! convert between such types, you can use these traits in tandem
//! with `<[T]>::to_vec` to perform a copy:
//!
//! ```
//! # use ::slice_of_array::prelude::*;
//! let vec = vec![[2i32, 2, 2], [7, 7, 7]];
//!
//! // copying into a Vec<i32>
//! let flattened = vec.flat().to_vec();
//! assert_eq!(flattened, vec![2i32, 2, 2, 7, 7, 7]);
//! ```
//!
//! [`nest`]: trait.SliceNestExt.html#tymethod.nest
//! [`flat`]: trait.SliceFlatExt.html#tymethod.flat
//! [`as_array`]: trait.SliceArrayExt.html#tymethod.as_array

#[cfg(test)]
#[macro_use]
extern crate version_sync;

pub mod prelude {
    pub use super::SliceFlatExt;
    pub use super::SliceNestExt;
    pub use super::SliceArrayExt;
}

/// Marker trait used in bounds of `Slice{Flat,Nest,Array}Ext`.
///
/// This marks the array types approved for use with `slice_of_array`.
///
/// It is deliberately not implemented for arrays of size 0,
/// because said traits are otherwise perfect isomorphisms for
/// the inputs that they don't fail on;
/// Having `.flat().nest()` turn a `&[[i32; 0]]` of length 18
/// into a `&[[i32; 0]]` of length 0 gives me the heebie jeebies.
///
/// # Safety
///
/// For any implementation, `Self` must have the same size and
/// alignment as `[Self::Element; Self::LEN]`.  Furthermore, you
/// must be comfortable with the possibility of `[Self]` being
/// reinterpreted bitwise as `[[Self::Element; Self::LEN]]` (or
/// vice versa) in any possible context.
///
/// # Notice
///
/// **Please do NOT use this trait in public interfaces in your code.**
///
/// `slice_of_array` is not yet 1.0, is not ready (or even designed)
/// to be used as a public dependency.
///
/// However, feel free to implement this trait on your own private
/// wrapper types around arrays. (this use case is explicitly supported
/// because the author does it himself, and quite frankly, it's pretty
/// convenient!)
pub unsafe trait IsSliceomorphic: Sized {
    type Element;
    const LEN: usize;
}

macro_rules! impl_approved_array {
    ($($n:tt)+) => {$(
        unsafe impl<T> IsSliceomorphic for [T; $n] {
            type Element = T;
            const LEN: usize = $n;
        }
    )+};
}

impl_approved_array!{
     1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
    21  22  23  24  25  26  27  28  29  30  31  32  43  44  45  46  47  48  49  50
    51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70
    71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110
   111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
   256
   512
  1024
  2048
  4096
  8192
  1000
 10000
}

// Validate some known assumptions of IsSliceomorphic "at runtime,"
//  in a manner which should get optimized into thin air.
fn validate_some_assumptions<V: IsSliceomorphic>() {
    use ::std::mem::{align_of, size_of};

    assert_eq!(
        align_of::<V::Element>(),
        align_of::<V>());

    assert_eq!(
        V::LEN * size_of::<V::Element>(),
        size_of::<V>());
}

/// Permits viewing a slice of arrays as a flat slice.
///
/// # Implementors
///
/// The methods are available on `&[[T; n]]` and `&mut [[T; n]]`
/// for all `T`, and `1 <= n <= 128` (and a couple other sizes).
/// Of course, they are also available on `Vec<[T; n]>` and any
/// other type that derefs or unsizes to `[[T; n]]`.
///
/// # Notice
///
/// The existence of this trait is an implementation detail.
///
/// **Please do NOT use this trait as a generic bound in your code.**
pub trait SliceFlatExt<T> {
    /// View `&[[T; n]]` as `&[T]`.
    fn flat(&self) -> &[T];

    /// View `&mut [[T; n]]` as `&mut [T]`
    fn flat_mut(&mut self) -> &mut [T];
}

/// Permits viewing a slice as a slice of arrays.
///
/// The new array dimension can often be inferred.
/// When it is not, a turbofish can be used: `.nest::<[_; 3]>()`.
///
/// # Panics
///
/// All methods panic if the input length is not divisible by `n`.
///
/// # Implementors
///
/// The methods are available on `&[T]` and `&mut [T]` for all `T`.
/// Of course, they are also available on `Vec<T>` and any other type
/// that derefs or unsizes to `[T]`.
///
/// # Notice
///
/// The existence of this trait is an implementation detail.
///
/// **Please do NOT use this trait as a generic bound in your code.**
pub trait SliceNestExt<T> {
    /// View `&[T]` as `&[[T; n]]` without copying.
    fn nest<V: IsSliceomorphic<Element=T>>(&self) -> &[V];

    /// View `&mut [T]` as `&mut [[T; n]]` without copying.
    fn nest_mut<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut [V];
}

/// Permits viewing a slice as an array.
///
/// The output array length can often be inferred.
/// When it is not, a turbofish can be used: `.as_array::<[_; 3]>()`.
///
/// # Panics
///
/// All methods panic if the slice is not exactly the requested length.
///
/// # Implementors
///
/// The methods are available on `&[T]` and `&mut [T]` for all `T`.
/// Of course, they are also available on `Vec<T>` and any other type
/// that derefs or unsizes to `[T]`.
///
/// # Notice
///
/// The existence of this trait is an implementation detail.
///
/// **Please do NOT use this trait as a generic bound in your code.**
pub trait SliceArrayExt<T> {
    /// View `&[T]` as `&[T; n]`.
    fn as_array<V: IsSliceomorphic<Element=T>>(&self) -> &V;

    /// View `&mut [T]` as `&mut [T; n]`.
    fn as_mut_array<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut V;

    /// Clone `&[T]` to `[T; n]`.
    ///
    /// This is provided because `.as_array().clone()` tends to cause trouble for
    /// type inference.
    fn to_array<V: IsSliceomorphic<Element=T>>(&self) -> V where V: Clone
    { self.as_array::<V>().clone() }
}

impl<V: IsSliceomorphic> SliceFlatExt<V::Element> for [V] {
    fn flat(&self) -> &[V::Element] {
        // UNSAFETY: (::std::slice::from_raw_parts)
        // - pointer must be non-null (even for zero-length)
        // - pointer must be aligned
        // - pointer must be valid for given size
        // - lifetimes are unchecked
        unsafe {
            validate_some_assumptions::<V>();
            ::std::slice::from_raw_parts(
                self.as_ptr() as *const _,
                self.len() * V::LEN,
            )
        }
    }

    fn flat_mut(&mut self) -> &mut [V::Element] {
        // UNSAFETY: (::std::slice::from_raw_parts_mut)
        // - pointer must be non-null (even for zero-length)
        // - pointer must be aligned
        // - pointer must be valid for given size
        // - lifetimes are unchecked
        // - aliasing guarantees of &mut are unchecked
        unsafe {
            validate_some_assumptions::<V>();
            ::std::slice::from_raw_parts_mut(
                self.as_mut_ptr() as *mut _,
                self.len() * V::LEN,
            )
        }
    }
}

impl<T> SliceNestExt<T> for [T] {
    fn nest<V: IsSliceomorphic<Element=T>>(&self) -> &[V] {
        validate_some_assumptions::<V>();
        assert_eq!(0, self.len() % V::LEN,
            "cannot view slice of length {} as &[[_; {}]]",
            self.len(), V::LEN);

        // UNSAFETY: (::std::slice::from_raw_parts)
        // - pointer must be non-null (even for zero-length)
        // - pointer must be aligned
        // - pointer must be valid for given size
        // - lifetimes are unchecked
        unsafe { ::std::slice::from_raw_parts(
            self.as_ptr() as *const _,
            self.len() / V::LEN,
        )}
    }

    fn nest_mut<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut [V] {
        validate_some_assumptions::<V>();
        assert_eq!(0, self.len() % V::LEN,
            "cannot view slice of length {} as &mut [[_; {}]]",
            self.len(), V::LEN);

        // UNSAFETY: (::std::slice::from_raw_parts_mut)
        // - pointer must be non-null (even for zero-length)
        // - pointer must be aligned
        // - pointer must be valid for given size
        // - lifetimes are unchecked
        // - aliasing guarantees of &mut are unchecked
        unsafe { ::std::slice::from_raw_parts_mut(
            self.as_ptr() as *mut _,
            self.len() / V::LEN,
        )}
    }
}

impl<T> SliceArrayExt<T> for [T] {
    fn as_array<V: IsSliceomorphic<Element=T>>(&self) -> &V {
        assert_eq!(self.len(), V::LEN,
            "cannot view slice of length {} as &[_; {}]",
            self.len(), V::LEN);

        &self.nest()[0]
    }

    fn as_mut_array<V: IsSliceomorphic<Element=T>>(&mut self) -> &mut V {
        assert_eq!(self.len(), V::LEN,
            "cannot view slice of length {} as &mut [_; {}]",
            self.len(), V::LEN);

        &mut self.nest_mut()[0]
    }
}

#[cfg(test)]
mod tests {
    pub use super::prelude::*;

    #[test]
    fn inference_lattice() {
        // Checks that chaining nest().nest() or nest().as_array()
        // can be done without explicit annotations on the first method call.
        let mut v = vec![(); 9];

        { let _: &[[(); 3]; 3] = v.nest().as_array(); }
        { let _: &[[[(); 3]; 3]] = v.nest().nest(); }
        { let _: &mut [[(); 3]; 3] = v.nest_mut().as_mut_array(); }
        { let _: &mut [[[(); 3]; 3]] = v.nest_mut().nest_mut(); }
        { let _: [[(); 3]; 3] = v.nest().to_array(); }
        { let _: Vec<[(); 3]> = v.nest().to_vec(); }
    }

    mod failures {
        use super::super::*;

        #[test]
        #[should_panic(expected = "cannot view slice of length 8")]
        fn fail_nest_not_multiple() {
            let v = vec![(); 8];
            let _: &[[(); 3]] = v.nest();
        }

        #[test]
        #[should_panic(expected = "cannot view slice of length 8")]
        fn nest_mut_not_multiple() {
            let mut v = vec![(); 8];
            let _: &mut [[(); 3]] = v.nest_mut();
        }

        // bad array size tests;
        //  we try converting slices of length 1 or 6 into a length 3 array.
        //  These sizes were chosen to catch accidental acceptance in
        //    the case of sizes that divide evenly
        #[test]
        #[should_panic(expected = "cannot view slice of length 1")]
        fn as_array_too_small() {
            let v = vec![(); 1];
            let _: &[(); 3] = v.as_array();
        }

        #[test]
        #[should_panic(expected = "cannot view slice of length 6")]
        fn as_array_too_large() {
            let v = vec![(); 6];
            let _: &[(); 3] = v.as_array();
        }

        #[test]
        #[should_panic(expected = "cannot view slice of length 1")]
        fn as_mut_array_too_small() {
            let mut v = vec![(); 1];
            let _: &mut [(); 3] = v.as_mut_array();
        }

        #[test]
        #[should_panic(expected = "cannot view slice of length 6")]
        fn as_mut_array_too_large() {
            let mut v = vec![(); 6];
            let _: &mut [(); 3] = v.as_mut_array();
        }
    }

    mod dox {
        #[test]
        fn test_readme_version() {
            assert_markdown_deps_updated!("README.md");
        }

        #[test]
        fn test_html_root_url() {
            assert_html_root_url_updated!("lib.rs");
        }
    }
}