1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
use num_traits::Signed; #[inline] pub fn is_convex<T>(points: &[[T; 2]]) -> bool where T: Copy + Signed + PartialOrd, { let n = points.len(); if n < 3 { true } else { let mut i = 0; let l = n - 2; while i < l { if !is_triangle_convex(&points[i], &points[i + 1], &points[i + 2]) { return false; } else { i += 3; } } if !is_triangle_convex(&points[l], &points[l + 1], &points[0]) { return false; } if !is_triangle_convex(&points[l + 1], &points[0], &points[1]) { return false; } true } } #[test] fn test_is_convex() { let convex_points = [[1, -1], [1, 1], [-1, 1], [1, -1], [-1, 1], [-1, -1]]; assert!(is_convex(&convex_points)); let concave_points = [[1, -1], [-1, 1], [1, 1], [1, -1], [-1, -1], [-1, 1]]; assert!(!is_convex(&concave_points)); } #[inline] pub fn is_triangle_convex<T>(a: &[T; 2], b: &[T; 2], c: &[T; 2]) -> bool where T: Copy + Signed + PartialOrd, { ((a[1] - b[1]) * (c[0] - b[0]) + (b[0] - a[0]) * (c[1] - b[1])) >= T::zero() } #[test] fn test_is_triangle_convex() { assert!(is_triangle_convex(&[0, 1], &[-1, 0], &[1, 0])); assert!(!is_triangle_convex(&[0, 1], &[1, 0], &[-1, 0])); }