Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
//! This module implements per-component parallelism.
//! It should be possible to implement per-row parallelism as well,
//! which should also boost performance of grayscale images
//! and allow scaling to more cores.
//! However, that would be more complex, so we use this as a starting point.

use decoder::MAX_COMPONENTS;
use error::Result;
use std::{mem, sync::mpsc::{self, Sender}};
use std::thread;
use super::{RowData, Worker};
use super::immediate::ImmediateWorker;

enum WorkerMsg {
    Start(RowData),
    AppendRow(Vec<i16>),
    GetResult(Sender<Vec<u8>>),
}
pub struct MultiThreadedWorker {
    senders: [Option<Sender<WorkerMsg>>; MAX_COMPONENTS]
}

impl Worker for MultiThreadedWorker {
    fn new() -> Result<Self> {
        Ok(MultiThreadedWorker {
            senders: [None, None, None, None]
        })
    }
    fn start(&mut self, row_data: RowData) -> Result<()> {
        // if there is no worker thread for this component yet, start one
        let component = row_data.index;
        if let None = self.senders[component] {
            let sender = spawn_worker_thread(component)?;
            self.senders[component] = Some(sender);
        }
        // we do the "take out value and put it back in once we're done" dance here
        // and in all other message-passing methods because there's not that many rows
        // and this should be cheaper than spawning MAX_COMPONENTS many threads up front
        let sender = mem::replace(&mut self.senders[component], None).unwrap();
        sender.send(WorkerMsg::Start(row_data)).expect("jpeg-decoder worker thread error");
        self.senders[component] = Some(sender);
        Ok(())
    }
    fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
        let component = row.0;
        let sender = mem::replace(&mut self.senders[component], None).unwrap();
        sender.send(WorkerMsg::AppendRow(row.1)).expect("jpeg-decoder worker thread error");
        self.senders[component] = Some(sender);
        Ok(())
    }
    fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
        let (tx, rx) = mpsc::channel();
        let sender = mem::replace(&mut self.senders[index], None).unwrap();
        sender.send(WorkerMsg::GetResult(tx)).expect("jpeg-decoder worker thread error");
        Ok(rx.recv().expect("jpeg-decoder worker thread error"))
    }
}

fn spawn_worker_thread(component: usize) -> Result<Sender<WorkerMsg>> {
    let thread_builder = thread::Builder::new().name(format!("worker thread for component {}", component));
    let (tx, rx) = mpsc::channel();

    thread_builder.spawn(move || {
        let mut worker = ImmediateWorker::new_immediate();

        while let Ok(message) = rx.recv() {
            match message {
                WorkerMsg::Start(mut data) => {
                    // we always set component index to 0 for worker threads
                    // because they only ever handle one per thread and we don't want them
                    // to attempt to access nonexistent components
                    data.index = 0;
                    worker.start_immediate(data);
                },
                WorkerMsg::AppendRow(row) => {
                    worker.append_row_immediate((0, row));
                },
                WorkerMsg::GetResult(chan) => {
                    let _ = chan.send(worker.get_result_immediate(0));
                    break;
                },
            }
        }
    })?;

    Ok(tx)
}