1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sqrtf(x: f32) -> f32 {
llvm_intrinsically_optimized! {
#[cfg(target_arch = "wasm32")] {
return if x < 0.0 {
::core::f32::NAN
} else {
unsafe { ::core::intrinsics::sqrtf32(x) }
}
}
}
#[cfg(target_feature = "sse")]
{
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
unsafe {
let m = _mm_set_ss(x);
let m_sqrt = _mm_sqrt_ss(m);
_mm_cvtss_f32(m_sqrt)
}
}
#[cfg(not(target_feature = "sse"))]
{
const TINY: f32 = 1.0e-30;
let mut z: f32;
let sign: i32 = 0x80000000u32 as i32;
let mut ix: i32;
let mut s: i32;
let mut q: i32;
let mut m: i32;
let mut t: i32;
let mut i: i32;
let mut r: u32;
ix = x.to_bits() as i32;
if (ix as u32 & 0x7f800000) == 0x7f800000 {
return x * x + x;
}
if ix <= 0 {
if (ix & !sign) == 0 {
return x;
}
if ix < 0 {
return (x - x) / (x - x);
}
}
m = ix >> 23;
if m == 0 {
i = 0;
while ix & 0x00800000 == 0 {
ix <<= 1;
i = i + 1;
}
m -= i - 1;
}
m -= 127;
ix = (ix & 0x007fffff) | 0x00800000;
if m & 1 == 1 {
ix += ix;
}
m >>= 1;
ix += ix;
q = 0;
s = 0;
r = 0x01000000;
while r != 0 {
t = s + r as i32;
if t <= ix {
s = t + r as i32;
ix -= t;
q += r as i32;
}
ix += ix;
r >>= 1;
}
if ix != 0 {
z = 1.0 - TINY;
if z >= 1.0 {
z = 1.0 + TINY;
if z > 1.0 {
q += 2;
} else {
q += q & 1;
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
f32::from_bits(ix as u32)
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::f32::*;
#[test]
fn sanity_check() {
assert_eq!(sqrtf(100.0), 10.0);
assert_eq!(sqrtf(4.0), 2.0);
}
#[test]
fn spec_tests() {
assert!(sqrtf(-1.0).is_nan());
assert!(sqrtf(NAN).is_nan());
for f in [0.0, -0.0, INFINITY].iter().copied() {
assert_eq!(sqrtf(f), f);
}
}
}