Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
//! Compute a shortest path using the [iterative deepening depth-first search
//! algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search).

/// Compute a shortest path using the [iterative deepening depth-first search
/// algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search).
///
/// The shortest path starting from `start` up to a node for which `success` returns `true` is
/// computed and returned in a `Some`. If no path can be found, `None`
/// is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// The returned path comprises both the start and end node. Note that the start node ownership
/// is taken by `iddfs` as no clones are made.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight
/// moves.
///
/// The first version uses an explicit type `Pos` on which the required traits are derived.
///
/// ```
/// use pathfinding::prelude::iddfs;
///
/// #[derive(Eq, PartialEq)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///   fn successors(&self) -> Vec<Pos> {
///     let &Pos(x, y) = self;
///     vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2),
///          Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)]
///   }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = iddfs(Pos(1, 1), |p| p.successors(), |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").len(), 5);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more closures,
/// and is thus shorter.
///
/// ```
/// use pathfinding::prelude::iddfs;
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = iddfs((1, 1),
///                  |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2),
///                                 (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)],
///                  |&p| p == GOAL);
/// assert_eq!(result.expect("no path found").len(), 5);
/// ```
pub fn iddfs<N, FN, IN, FS>(start: N, mut successors: FN, mut success: FS) -> Option<Vec<N>>
where
    N: Eq,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
    FS: FnMut(&N) -> bool,
{
    let mut path = vec![start];

    let mut current_max_depth: usize = 1;

    loop {
        match step(&mut path, &mut successors, &mut success, current_max_depth) {
            Path::FoundOptimum => return Some(path),
            Path::NoneAtThisDepth => current_max_depth += 1,
            Path::Impossible => return None,
        }
    }
}

#[derive(Debug)]
enum Path {
    FoundOptimum,
    Impossible,
    NoneAtThisDepth,
}

fn step<N, FN, IN, FS>(
    path: &mut Vec<N>,
    successors: &mut FN,
    success: &mut FS,
    depth: usize,
) -> Path
where
    N: Eq,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
    FS: FnMut(&N) -> bool,
{
    if depth == 0 {
        Path::NoneAtThisDepth
    } else if success(path.last().unwrap()) {
        Path::FoundOptimum
    } else {
        let successors_it = successors(path.last().unwrap());

        let mut best_result = Path::Impossible;

        for n in successors_it {
            if !path.contains(&n) {
                path.push(n);
                match step(path, successors, success, depth - 1) {
                    Path::FoundOptimum => return Path::FoundOptimum,
                    Path::NoneAtThisDepth => best_result = Path::NoneAtThisDepth,
                    Path::Impossible => (),
                }
                path.pop();
            }
        }

        best_result
    }
}