1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
//! Compute a shortest path using the [iterative deepening depth-first search //! algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search). /// Compute a shortest path using the [iterative deepening depth-first search /// algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search). /// /// The shortest path starting from `start` up to a node for which `success` returns `true` is /// computed and returned in a `Some`. If no path can be found, `None` /// is returned instead. /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node. /// - `success` checks whether the goal has been reached. It is not a node as some problems require /// a dynamic solution instead of a fixed node. /// /// A node will never be included twice in the path as determined by the `Eq` relationship. /// /// The returned path comprises both the start and end node. Note that the start node ownership /// is taken by `iddfs` as no clones are made. /// /// # Example /// /// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight /// moves. /// /// The first version uses an explicit type `Pos` on which the required traits are derived. /// /// ``` /// use pathfinding::prelude::iddfs; /// /// #[derive(Eq, PartialEq)] /// struct Pos(i32, i32); /// /// impl Pos { /// fn successors(&self) -> Vec<Pos> { /// let &Pos(x, y) = self; /// vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2), /// Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)] /// } /// } /// /// static GOAL: Pos = Pos(4, 6); /// let result = iddfs(Pos(1, 1), |p| p.successors(), |p| *p == GOAL); /// assert_eq!(result.expect("no path found").len(), 5); /// ``` /// /// The second version does not declare a `Pos` type, makes use of more closures, /// and is thus shorter. /// /// ``` /// use pathfinding::prelude::iddfs; /// /// static GOAL: (i32, i32) = (4, 6); /// let result = iddfs((1, 1), /// |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2), /// (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)], /// |&p| p == GOAL); /// assert_eq!(result.expect("no path found").len(), 5); /// ``` pub fn iddfs<N, FN, IN, FS>(start: N, mut successors: FN, mut success: FS) -> Option<Vec<N>> where N: Eq, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = N>, FS: FnMut(&N) -> bool, { let mut path = vec![start]; let mut current_max_depth: usize = 1; loop { match step(&mut path, &mut successors, &mut success, current_max_depth) { Path::FoundOptimum => return Some(path), Path::NoneAtThisDepth => current_max_depth += 1, Path::Impossible => return None, } } } #[derive(Debug)] enum Path { FoundOptimum, Impossible, NoneAtThisDepth, } fn step<N, FN, IN, FS>( path: &mut Vec<N>, successors: &mut FN, success: &mut FS, depth: usize, ) -> Path where N: Eq, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = N>, FS: FnMut(&N) -> bool, { if depth == 0 { Path::NoneAtThisDepth } else if success(path.last().unwrap()) { Path::FoundOptimum } else { let successors_it = successors(path.last().unwrap()); let mut best_result = Path::Impossible; for n in successors_it { if !path.contains(&n) { path.push(n); match step(path, successors, success, depth - 1) { Path::FoundOptimum => return Path::FoundOptimum, Path::NoneAtThisDepth => best_result = Path::NoneAtThisDepth, Path::Impossible => (), } path.pop(); } } best_result } }