Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Bernoulli distribution.

use crate::distributions::Distribution;
use crate::Rng;
use core::{fmt, u64};

/// The Bernoulli distribution.
///
/// This is a special case of the Binomial distribution where `n = 1`.
///
/// # Example
///
/// ```rust
/// use rand::distributions::{Bernoulli, Distribution};
///
/// let d = Bernoulli::new(0.3).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a Bernoulli distribution", v);
/// ```
///
/// # Precision
///
/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
/// so only probabilities that are multiples of 2<sup>-64</sup> can be
/// represented.
#[derive(Clone, Copy, Debug)]
pub struct Bernoulli {
    /// Probability of success, relative to the maximal integer.
    p_int: u64,
}

// To sample from the Bernoulli distribution we use a method that compares a
// random `u64` value `v < (p * 2^64)`.
//
// If `p == 1.0`, the integer `v` to compare against can not represented as a
// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
// Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
// `f64` only has 53 bits of precision, and the next largest value of `p` will
// result in `2^64 - 2048`.
//
// Also there is a 100% theoretical concern: if someone consistenly wants to
// generate `true` using the Bernoulli distribution (i.e. by using a probability
// of `1.0`), just using `u64::MAX` is not enough. On average it would return
// false once every 2^64 iterations. Some people apparently care about this
// case.
//
// That is why we special-case `u64::MAX` to always return `true`, without using
// the RNG, and pay the performance price for all uses that *are* reasonable.
// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
// extra check.
const ALWAYS_TRUE: u64 = u64::MAX;

// This is just `2.0.powi(64)`, but written this way because it is not available
// in `no_std` mode.
const SCALE: f64 = 2.0 * (1u64 << 63) as f64;

/// Error type returned from `Bernoulli::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BernoulliError {
    /// `p < 0` or `p > 1`.
    InvalidProbability,
}

impl fmt::Display for BernoulliError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
        })
    }
}

#[cfg(feature = "std")]
impl ::std::error::Error for BernoulliError {}

impl Bernoulli {
    /// Construct a new `Bernoulli` with the given probability of success `p`.
    ///
    /// # Precision
    ///
    /// For `p = 1.0`, the resulting distribution will always generate true.
    /// For `p = 0.0`, the resulting distribution will always generate false.
    ///
    /// This method is accurate for any input `p` in the range `[0, 1]` which is
    /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
    /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
    #[inline]
    pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
        if !(p >= 0.0 && p < 1.0) {
            if p == 1.0 {
                return Ok(Bernoulli { p_int: ALWAYS_TRUE });
            }
            return Err(BernoulliError::InvalidProbability);
        }
        Ok(Bernoulli {
            p_int: (p * SCALE) as u64,
        })
    }

    /// Construct a new `Bernoulli` with the probability of success of
    /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
    /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
    ///
    /// return `true`. If `numerator == 0` it will always return `false`.
    /// For `numerator > denominator` and `denominator == 0`, this returns an
    /// error. Otherwise, for `numerator == denominator`, samples are always
    /// true; for `numerator == 0` samples are always false.
    #[inline]
    pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
        if numerator > denominator || denominator == 0 {
            return Err(BernoulliError::InvalidProbability);
        }
        if numerator == denominator {
            return Ok(Bernoulli { p_int: ALWAYS_TRUE });
        }
        let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
        Ok(Bernoulli { p_int })
    }
}

impl Distribution<bool> for Bernoulli {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
        // Make sure to always return true for p = 1.0.
        if self.p_int == ALWAYS_TRUE {
            return true;
        }
        let v: u64 = rng.gen();
        v < self.p_int
    }
}

#[cfg(test)]
mod test {
    use super::Bernoulli;
    use crate::distributions::Distribution;
    use crate::Rng;

    #[test]
    fn test_trivial() {
        let mut r = crate::test::rng(1);
        let always_false = Bernoulli::new(0.0).unwrap();
        let always_true = Bernoulli::new(1.0).unwrap();
        for _ in 0..5 {
            assert_eq!(r.sample::<bool, _>(&always_false), false);
            assert_eq!(r.sample::<bool, _>(&always_true), true);
            assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
            assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_average() {
        const P: f64 = 0.3;
        const NUM: u32 = 3;
        const DENOM: u32 = 10;
        let d1 = Bernoulli::new(P).unwrap();
        let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
        const N: u32 = 100_000;

        let mut sum1: u32 = 0;
        let mut sum2: u32 = 0;
        let mut rng = crate::test::rng(2);
        for _ in 0..N {
            if d1.sample(&mut rng) {
                sum1 += 1;
            }
            if d2.sample(&mut rng) {
                sum2 += 1;
            }
        }
        let avg1 = (sum1 as f64) / (N as f64);
        assert!((avg1 - P).abs() < 5e-3);

        let avg2 = (sum2 as f64) / (N as f64);
        assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
    }

    #[test]
    fn value_stability() {
        let mut rng = crate::test::rng(3);
        let distr = Bernoulli::new(0.4532).unwrap();
        let mut buf = [false; 10];
        for x in &mut buf {
            *x = rng.sample(&distr);
        }
        assert_eq!(buf, [
            true, false, false, true, false, false, true, true, true, true
        ]);
    }
}